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Abstract

GAŠPER Ján: Models of infectious disease and their numerical solution [Dissertation

thesis] Comenius University in Bratislava, Faculty of Mathematics, Physics and Infor-

matics, Department of Applied Mathematics and Statistics; Supervisor: prof. RNDr.

Daniel Ševčovič, DrSc., Bratislava, 2024, 107 pages.

In this thesis, known compartmental epidemiological models and approaches to

their numerical solutions will be analyzed. The first result of this thesis will be a new

epidemiological model that includes immunity boosting of a recovered individual en-

countering an infectious individual. The new model will be generalized for an arbitrary

immunity loss curve. The second result of this thesis will be spatially heterogeneous

model with population diffusion modeled by a fractional Laplacian. The numerical

solutions of new models will be implemented and the results will be visually presented.

Keywords: epidemiological models, SIR model, SIRS model, immunity boosting,

heterogeneous SIR model, fractional Laplacian



Abstrakt

GAŠPER, Ján: Modely šírenia infekčných ochorení a ich numerické riešenie [Dizeratčná

práca], Univerzita Komenského v Bratislave, Fakulta matematiky, fyziky a informatiky,

Katedra aplikovanej matematiky a štatistiky; vedúci práce: prof. RNDr. Daniel Ševčovič,

DrSc., Bratislava 2024, 107 strán.

V tejto práci analyzujeme známe kompartmentové epidemiologické modely a prís-

tupy k ich numerickému riešeniu. Prvým výsledkom práce je nový epidemiolog-

ický model, ktorý zahŕňa posilňovanie imunity pri kontakte imúnneho jednotlivca

s infekčným. Nový model zovšeobecníme pre l’ubovol’nú krivku ubúdania imunity.

Druhým výsledkom práce je priestorovo heterogénny model s difúziou populácie, ktorú

budeme modelovat’ pomocou zlomkového Laplaciánu. Implementujeme numerické

riešenia nových modelov a výsledky graficky znázorníme.

Kl’účové slová: epidemiologické modely, SIR model, SIRS model, posilnenie

imunity, heterogénny SIR model, zlomkový Laplacián
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Chapter 1
Introduction

Mathematical epidemiology is a discipline of applied mathematics that has the goal

of predicting and understanding the spread of infectious diseases. There are multiple

approaches to this topic. In this thesis, an approach utilizing dynamical systems will be

employed.

In this thesis, compartmental models will be utilized. They are built on top of the idea

of dividing the population of individuals according to their disease status [84]. The

compartments are susceptible (individuals who could become ill), infectious (individuals

that were ill and were spreading the disease) and recovered (individuals that overcame

the disease and cannot become ill). However, Keeling’s original idea faded and was

brought back several years later in 1979, when an improved version of the original

model was presented in a textbook [5], as [84] refers.

In chapter 2 an overview of epidemiological models is presented. There are many

approaches to modeling such a system: one can consider continuous or discrete time,

continuous or discrete set of possible system states, stochastic or deterministic system

etc. These approaches are discussed in section 2.1. In section 2.2, the standard SIR

model is presented and in section 2.3 its extensions are presented.

The dynamical models are usually formulated as a system of differential equations.

Several numerical methods used to solve the equations are presented in chapter 3.

Methods for solving systems of ordinary differential equations are presented in section

3.1. Methods for solving parabolic partial differential equations in section 3.2. Special

set of methods for solving stochastic models with discrete state space is presented in

8
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section 3.3. Finally, methods for solving stochastic differential equations are presented

in section 3.4.

In this thesis, a new epidemiological model is derived, that elaborates the idea of

boosting immunity on recovered-infectious contact and is discussed in chapter 4. We

start by analyzing the standard SIRS model and suggesting changes to incorporate the

immunity boosting effect in section 4.1. Then we apply the idea of boosting to a model

with a custom waning profile in section 4.2 and show four different formulations of

the model: two for discrete time and two for continuous time. Finally, we provide

numerical results of the models in section 4.3.

In chapter 5 a novel epidemiological model with fractional Laplace operator to

model diffusion is derived. We summarize the idea of fractional Laplacian in section 5.1.

We discuss the behavior of the model at the boundary of the studied spatial domain in

section 5.2. Numerical methods are discussed in section 5.3 and numerical results of the

model are provided in section 5.4.

Finally, chapter 6 contains selected parts of the code used in this thesis. The code is

in languages Python and Julia.



Chapter 2
Overview of epidemiological models

In this chapter, we present the discussion of several types of dynamical epidemiological

models.

2.1 Types of models

2.1.1 Continuous and discrete time

Modeling of spread of infectious diseases is usually done in either discrete time or in

continuous time (apart from special time-free models such as graph-based described

in chapter 16.3. of [69]). Discrete-time modeling leads to recursive sequences and time

series models, meanwhile modeling with continuous time often leads to (deterministic

or stochastic) differential equations. Both approaches have their place in modeling the

spread of infectious diseases.

Recursive sequence is a good tool when the infection period is almost constant.

Structure of the model can be simplified a lot, if the time step coincides with the

infection period. Next case, in which a recursive sequence is appropriate, is a case

of seasonal disease with a time step of the same length as the season period. This

approach was used e.g. for modeling child diseases, with the seasonality present due to

periodicity of the school year [10, 34, 55].

On the other hand one can consider modeling dynamical systems in continuous time.

This approach often leads to differential equations of various kinds, such as ordinary dif-

ferential equations, integral-differential equations, delayed differential equations, partial

10
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differential equations, or stochastic differential equations. The problem of this approach

is that the model usually cannot be solved analytically, so we are left with numerical

solutions only [16]. Models using ordinary differential equations often assume Markov

property, which may not be satisfied in practice. Artificially raising the dimension of

the model is a workaround which was proven useful in [36]. There are many tools to

analyze models with differential equations, such as perturbation theory, Poincaré maps,

phase portrait analysis, Lyapunov functional or LaSalle’s invariance principle. Another

option to model non-markovian processes is to use integral-differential equations or

partial differential equations such as in [31, 68], but analytical tools for these are much

more exacting. These methods will be used also in this thesis in chapter 4.

2.1.2 Continuous and discrete state space

When the number of individuals in each compartment is high enough, treating the

number of individuals as continuous quantities yields only a small relative error. Con-

tinuous state space allows us to use differential equations, which were discussed above.

However, when a number of individuals is relatively small to the population, a continu-

ous simplification might not be a good approximation, and can lead to infamous atto-fox

problem. 1 This can be avoided by allowing only non-negative integers to represent the

number of individuals in each compartment.

2.1.3 Deterministic and stochastic models

The spread of a disease is a random process, with randomness present in many steps:

random daily contacts, pathogen transmission, immunity system response of individu-

als, etc. Therefore a stochastic model might be better, especially when one is interested

in quantifying uncertainty. However stochastic models have their drawbacks, mainly,

higher computational complexity. Stochastic models in continuous time with discrete

state use the same tools as chemical kinetics, such as Gillespie algorithm, τ -leaping

1The atto-fox problem is a known disadvantage of biological models with continuous state space. The

name comes from atto-, a SI prefix for 10−18. The name comes from predator-prey model, which predicted

that the population of foxes will be as small as 10−18. The biological interpretation of this number is that

foxes will go extinct, however the model showed different behavior. This problem was addressed in [76]
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method, master equation etc. These methods are further discussed in section 2.3.7.

When modeling in discrete time, τ -leaping method is still viable, along with models

based on binomial distribution, such as the Greenwood model and Reed-Frost model

[1, 43]. For overview of stochastic models and its applications, we refer the reader to

[80].

On the other hand, deterministic models are usually much easier to analyze and

solve numerically. Furthermore, in the limit case of large populations, the stochastic

model approaches deterministic behavior [40]. Deterministic models can be transformed

into stochastic by perturbing the model with a white noise in multiple ways [55]. We

will discuss one type of such perturbation in section 2.3.8.

2.2 The basic SIR model

The SIR model is the best-known epidemiological model, using continuous time and

continuous population. One of its first applications is in the article [66], in which the

model was employed to predict the number of infected households. A year later, the

first SIR model was published in [56] and its properties were analyzed.

In the model, the population is separated into three groups, or so-called compartments,

due to infection status: Susceptible (further denoted S, can catch infection), Infectious

(I, spreading the infection to S) and Recovered (R, overcame the disease and are im-

mune). Further we refer to the number of susceptible, infectious and recovered at time

t as S(t), I(t), R(t), respectively. It is important to note that epidemiological status of

infectious individuals may not be identical to medical status of diseased.

To build the model, we will use the following assumptions [1]:

• The infection is spread directly from infected individuals to others by a certain

kind of contact (adequate contact) and in no other way

• Any non-immune individual in the group, after such contact with an infectious

person in a given period, will develop the infection and will be infectious to others

only within the following time period, after which he is wholly immune.

• Each individual has a fixed probability of coming into adequate contact with
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any other specified individual in the group within one time interval, and this

probability is the same for every member of the group.

• These conditions remain constant during the epidemic.

The only two things that can happen to an individual (further called transitions) are

that susceptible individual meets infectious individual with the susceptible becoming

infectious (which can be symbolically written as S+ I → 2I) or the infectious individual

spontaneously becomes recovered (symbolically I → R).2 Epidemiological models

can be better understood in flow diagrams, which visually depict compartments and

transitions between them. For this model, the corresponding flow diagram (with rates

that will be discussed below) can be found in Fig. 2.1.3

One approach is to formulate the model first with a discrete time step ∆t and then

take the limit ∆t → 0+ to obtain differential equations governing the model. Let us

consider a homogeneous, closed population, so that individuals have equal contact

rate with each other and no migration takes place; let us denote the total number of

individuals N , which we will assume is constant.

First, we will consider the S + I → 2I transition. Let m be the contact rate, so an

individual meets m ∆t other people during a small time interval of duration ∆t. Let p

be the probability that pathogen is transmitted from infectious to susceptible during

the contact and causes an infection. Out of m ∆t contacts during the time step, only

m∆t I(t)/N are with an infectious person. The probability of still being susceptible after

the time step is (1− p)m∆t I(t)/N . This process, however, needs to be considered for each

of S(t) individuals. If the population is so large that the law of large numbers holds,

then during the time step S(t)
(
1− (1− p)m∆t I(t)/N

)
new infections will occur.

Next, the recovery transitions I → R. The number of recoveries during the time step

should be proportional to the number of infectious and length of the time step: γI ∆t.

Therefore we can write down the dynamics as:

S(t+ ∆t) = S(t)− S(t)
(
1− (1− p)m∆t I(t)/N

)
2Sometimes, the rate of the transition is written on top of the arrow, such as S + I

β SI
N−−−→ 2I or I

γI−→ R.

Sometimes, for the sake of brevity, only the rate parameter is written: S + I
β−→ 2I , I

γ−→ R.
3Some authors add a dotted arrow from S compartment to β arrow, representing the fact that the rate

of the new infection is dependent also on the number of individuals in I .
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I(t+ ∆t) = I(t) + (1− p)m∆t I(t)/N − γI(t) ∆t

R(t+ ∆t) = γI(t) ∆t,

which can be rearranged into:

S(t+ ∆t)− S(t)

∆t
= S(t)

1− (1− p)m∆t I(t)/N

∆t
I(t+ ∆t)− I(t)

∆t
= S(t)

1− (1− p)m∆t I(t)/N

∆t
− γI(t)

R(t+ ∆t)−R(t)

∆t
= γI(t).

Finally, taking the limit ∆t→ 0+ yields:

dS(t)

dt
= −βS(t)I(t)

N
dI(t)

dt
= β

S(t)I(t)

N
− γI(t)

dR(t)

dt
= γI(t),

(2.1)

where β = −m ln(1−p) is force of infection. The model above represents the standard SIR

model. This model is sometimes stated in terms of normalized variables s(t) = S(t)/N ,

i(t) = I(t)/N , r(t) = R(t)/N as:

ds(t)

dt
= −βs(t)i(t)

di(t)

dt
= βs(t)i(t)− γi(t)

dr(t)

dt
= γi(t).

(2.2)

These models, in both forms, can be reduced to a system of two ordinary differential

equations, because the number of recovered individuals can be inferred from the number

of people in other compartments. Instead of a differential equation for recovered

S I R
β γ

Fig. 2.1: Flow diagram of basic SIR model
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individuals, we may write an algebraic equation R(t) = N − S(t) − I(t), or r(t) =

1− s(t)− i(t).

The basic reproduction number –R0 – is an important number that determines qualita-

tive behavior of the model. It represents the average secondary number of infectious

cases from one infectious individual in a fully susceptible population. If R0 < 1, the

number of infectious people will fade; ifR0 > 1, the number of infectious people will

grow. In the standard SIR model, the basic reproduction number has value of β/γ.

[54, 55]

2.3 Extensions of SIR model

The basic SIR model may lack important aspects of the disease: incubation period,

births and deaths, immunity waning, heterogeneity of the population etc. Therefore a

number of extensions of the model was made. Some more advanced models combine

these extensions, especially models with the intention of being predictive. An excellent

overview of different models and underlying biological rationale can be found in the

article [78]. More detailed summary is presented in the textbook [55].

2.3.1 Incubation period: SEIR model

One of the most common extensions of the standard SIR model is the incorporation of

incubation period. This is usually done by adding a compartment of exposed (E) into

the model. These are individuals that are infected by the pathogen, but not spreading it

yet. The model can be described in terms of transitions as: S + I → E, E σ→ I , I → R,

see Fig. 2.2. In terms of differential equations the model reads:

dS(t)

dt
= −βS(t)I(t)

N
dE(t)

dt
= β

S(t)I(t)

N
− σE(t)

dI(t)

dt
= σE(t)− γI(t)

dR(t)

dt
= γI(t).
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Due to the delay in the infection period, this model shows slower spread of infection

through the population [55]. The SEIR model with further extensions is often used in

models of disease prediction and public policy control, for example in articles [11, 12,

52, 25, 49].

2.3.2 Population dynamics

One of the popular extensions of the basic SIR model is to include population dynamics:

births, migration and deaths. In this case, N , the total number of people may not

be constant. The basic SIR model is extended by transitions ∅ νN→ S, S µ→ ∅, I µ→ ∅,

R
µ→ ∅, where ∅ represents people to be born or dead people and people to migrate

in and out of considered population. The first of transitions above represents births

of new individuals. Since newborns did not overcome the disease, they belong to

the susceptible compartment.4 The latter three transitions represent natural deaths,

independent of the epidemiological status.5

The flow diagram for the model is in Fig. 2.3. The entire model in form of differential

equations is:

dS(t)

dt
= −βS(t)I(t)

N(t)
− µS(t) + νN(t)

dI(t)

dt
= β

S(t)I(t)

N(t)
− γI(t)− µI(t)

dR(t)

dt
= γI(t)− µR(t).

N(t) = S(t) + I(t) +R(t).

The parameters ν, µ can be chosen such that the total population is constant. When

4Some models suited for children diseases add another compartment M for newborns protected by

maternal immunity. The model is then called MSIR model.
5There are also models that include disease-induced deaths. For more detailed explanation see ch. 2.2.

of [55].

S I R
β γ

E
σ

Fig. 2.2: Flow diagram of SEIR model.
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S I R
β γ

ν

µ µ µ

Fig. 2.3: Flow diagram for SIR model with population dynamics

this happens, the derivative of total population is zero:

0 =
dN(t)

dt
=

d

dt
(S(t) + I(t) +R(t))

=
dS(t)

dt
+
dI(t)

dt
+
dR(t)

dt

= νN(t)− µS(t)− µI(t)− µR(t) = N(t)(ν − µ)

which is zero when ν = µ.

The model with constant population can be seen as using transitions S µ→ S, I µ→ S

and R
µ→ S instead of those introduced above. These transitions can be interpreted so

that a new individual is born at the exact time when another individual from compart-

ment either S, I or R dies.

2.3.3 Vaccination: SIRV model

For some diseases, a vaccination shortly after birth is common. This is modeled via

separate transitions for vaccinated and not vaccinated newborns: ∅ Nν(1−x)−−−−−→ S and

∅ νx−→ R, where x is the proportion of successfully vaccinated newborns. Symbols ∅

represents individuals that are not yet considered in the model.

The flow diagram is depicted in fig. 2.4 and the model in the form of differential

equations is:

dS(t)

dt
= −βS(t)I(t)

N(t)
− µS(t) + ν(1− x)N(t)

dI(t)

dt
= β

S(t)I(t)

N(t)
− γI(t)− µI(t)

dR(t)

dt
= γI(t)− µR(t) + νxN(t).

N(t) = S(t) + I(t) +R(t).

Again, by choice ν = µ the total population remains constant.
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S I R
β γ

µ µ µ

ν(1− x) νx

Fig. 2.4: Flow diagram for SIR model with population dynamics

2.3.4 Immunity waning: SIRS model

Recovery from many diseases does not grant lifelong immunity – recovered individuals

can become susceptible again. In order to reflect this, a new transition R ω→ S is added.

The model dynamics can be seen in Fig. 2.5 and the model reads:

dS(t)

dt
= −βS(t)I(t)

N
+ ωR(t)

dI(t)

dt
= β

S(t)I(t)

N
− γI(t)

dR(t)

dt
= γI(t)− ωR(t)

(2.3)

For time-dependent rates of immunity loss we refer the reader to our previous work

[31], in which such a model is described in great detail. For biological details of waning

immunity we refer the reader to [85].

S I R
β γ

ω

Fig. 2.5: Flow diagram for SIRS model

2.3.5 Discrete heterogeneous models

One of the assumptions of the basic SIR model was homogeneity of the population.

However, any larger population does not meet this assumption, which can weaken

both the predictive and analytic value of the model. The heterogeneity in the model

is usually either spatial, age, or related to risk behavior. The heterogeneous model

assumes n internally homogeneous groups. However, these groups interact with each

other in a heterogeneous manner.



2.3. EXTENSIONS OF SIR MODEL 19

In mathematical model, each of the S, I, R compartments is subdivided into n

compartments: S1 . . . Sn, I1 . . . In, R1 . . . Rn. The contact patterns are encoded into the

WAIFW 6 matrix B (capital beta). However, this matrix has n2 parameters, which can be

– especially in large-scale models – very hard to infer from data, so expert estimations

are often used. For some models, matrix B is assumed to be in a certain form. A nice

example of this technique is the article [30], in which the spread of sexually transmitted

diseases is discussed. The population is divided by the number of sexual partners

and matrix B has form: Bi,j = β ij∑
k knk

, where nk is the proportion of individuals with

exactly k partners and β is a scaling parameter.

In terms of differential equations the heterogeneous model has form:

dSi(t)

dt
= −

n∑
j=1

Bi,j
Si(t)Ij(t)

Nj(t)

dIi(t)

dt
=

n∑
j=1

Bi,j
Si(t)Ij(t)

Nj(t)
− γIi(t)

dRi(t)

dt
= γIi(t),

where Bi,j is an element of matrix B in i-th row, j-th column. More details can be added

into the model by including change of the group by an individual, such as in the case of

work commuting (for spatial models) or aging (for age models).

A recent example of usage of heterogeneous SEIR model for understanding contact

patterns is article [65], in which the population was split into multiple age groups and

effects of different protection measures were estimated.

One may be also interested in limiting behavior of the model for n→∞. This is, in

general, possible, granted that WAIFW matrix approach some limit. The model then

leads to partial differential equations, with one variable representing time and the other

representing heterogeneous parameters. Methods of finding reproduction number in

this kind of heterogeneous model are discussed in [27]. In [63], an immunological

structure of population is modeled, instead of spatial heterogeneity.

6Abbreviated Who Acquires Infection From Whom.
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2.3.6 Spatial models with diffusion

The spatial dimension may be treated as a continuous quantity. Instead of incorporating

WAIFW in the form of a convolution kernel, a diffusion of population is used to spread

the infection. This approach is called reaction-diffusion system.7 For a more detailed

discussion on spatial models, we refer the reader to chapter 7.4 of [55], chapter 11 of

[67] and review [26].

Let us consider a population living on an interval [0, L]. Let S(t, x), I(t, x), R(t, x)

denote the density of the individual in respective compartments at time t at position x.8

Individuals may interact only with other individuals at the same location. Furthermore,

the population will migrate along the interval [0, L] according to the diffusion term. For

diffusion term, the Laplacian is usually used.

The SIR model with diffusion can be expressed as:

dS(t, x)

dt
− κ ∆S(t, x) = −βS(t, x)I(t, x)

N(t, x)
(2.4)

dI(t, x)

dt
− κ ∆I(t, x) = β

S(t, x)I(t, x)

N(t, x)
− γI(t, x) (2.5)

dR(t, x)

dt
− κ ∆R(t, x) = γI(t, x), (2.6)

N(t, x) = S(t, x) + I(t, x) +R(t, x) (2.7)

where κ is diffusion rate and ∆ is a Laplace operator. The model can be naturally

extended into two (or possibly more) dimensions.

The model must include boundary condition. The Neumann boundary condition is

a usual choice, which will be discussed later in section 5.2. An extension of this model

will be introduced and analyzed in section 5.

2.3.7 Stochastic models with discrete state space

In this section, stochastic models will be discussed. In this section, we will focus on

models in continuous time and discrete state space. For a great introduction into the

topic, see [32] and [59].
7The term reaction-diffusion system comes from chemistry models, in which the substances can react to

form new products, and are subject to diffusion, as in a stationary liquid container.
8Density of population means that the total number of i.e. susceptible individuals at time t on interval

[a, b] ⊆ [0, L] is
∫ b
a
S(t, x)dx.
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We will consider a model with n compartments and m transitions. The number of

individuals in the i-th compartment will be called copy number of that compartment. The

vector of non-negative integers containing copy numbers at time t of all compartments

will be called state vector at time t and will be denoted x(t). Change in state vector after

j-th transition will be denoted νj , νj ∈ Nm
+ . The matrix with columns ν1 . . . νm will be

called stoichiometric matrix and denoted A:9

A =


| | |

ν1 ν2 · · · νm

| | |

 .
Each transition is associated with its transition rate function, which takes the state vector

and outputs the rate of the transition. Grouping together outputs of all rate functions

into a vector, we get one rate function, denoted a(x). 10 The sum of rates will be denoted

a0(x):

a0(x) = a1(x) + a2(x) + . . .+ am(x) = 1Ta(x),

where 1 is a column vector of ones.

The rate of transition in context of stochastic models should be understood in terms

of limit probability:

aj(x) = lim
∆t→0+

Pr(j-th transition will occur in next ∆t | state vector is x)

∆t

In other words, the rate multiplied by sufficiently small ∆t is the probability that the

corresponding transition will occur during the next time step of size ∆t. 11

Let us further assume that two transitions cannot happen simultaneously and tran-

sitions are independent. Assuming independence, the probability of two transitions

happening at the same time is of order (∆t)2, so the rate of such an event is zero.

9A significant proportion of stochastic models was derived from chemistry and molecular biology

models, hence the nomenclature follows this terminology.
10When the context is clear, the argument of rate function is omitted. The outputs of the function are

called rates or propensities of transitions.
11Another interpretation of the rate is d/dt(ln(1 − Fj(t))), where Fj(t) is the distribution function

of time to the next j-th transition. This interpretation comes handy for simulation of non-markovian

stochastic systems, in which the rate function does not depend on the current state vector only, but also

its history.
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For the case of the SIR model, n = 3, m = 2. The compartments are ordered: S, I, R

and transitions are ordered: S + I → 2I, I → R. The stoichiometry matrix has form:

A =


−1 0

1 −1

0 1

 .
The first column says that after the S + I → 2I transition, there is one individual less

in the S compartment and one individual more in I compartment. Analogically, after

I → R transition there is one individual less in the I compartment and one more in R

compartment.

To get the rate function we will analyze the SIR framework once more, without

averaging random events. Let us consider events during the small time step ∆t. First,

let us consider transition S + I → 2I . Probability that a susceptible person meets

some other person during the time step is m ∆t, probability that the other person is

infectious is I(t)/N(t) and probability of successful pathogen transmission is p. Then,

the probability that single susceptible person becomes infected during the next time

step is:

(1− p)m ∆tI(t)/N .

Considering this event for all S(t) individuals that may become infectious, we get the

rate:

a1

(
[S(t), I(t), R(t)]T

)
= lim

∆t→0+

S(t)(1− p)m ∆tI(t)/N

∆t
= β

S(t)I(t)

N
,

where, again, β = mp.

Regarding the transition representing recovery, we assume that every infectious

individual has probability of recovering during the next time step γ ∆t. Considering

that there are I(t) individuals, the rate is:

a2([S(t), I(t), R(t)]T ) = lim
∆t→0+

I(t)γ ∆t

∆t
= γI(t).

With defined stoichiometry matrix and rate function, the model is now complete.

Stochastic model can be, similarly to the deterministic model, reduced down to two

compartments with unchanged rate functions and a stoichiometry matrix

S =

−1 0

1 −1

 .
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2.3.8 Stochastic models with continuous state space

In this section, one type of stochasticity will be presented, which models the uncertainty

in parameters. 12 Assume that β and γ, slightly fluctuate, so that β(dt + dW
(1)
t ) and

γ(dt + dW
(2)
t ) are used instead of β dt and γ dt. The dWt terms are called stochastic

differential and represent infinitesimal change of Wiener process. 13 The model then

turns into a set of stochastic differential equations:

dS(t) = −βS(t)I(t)

N

(
dt+ dW

(1)
t

)
dI(t) = β

S(t)I(t)

N

(
dt+ dW

(1)
t

)
− γI(t)

(
dt+ dW

(2)
t

)
dR(t) = γI(t)

(
dt+ dW

(2)
t

)
.

(2.8)

where stochastic differentials dW (1)
t and dW

(2)
t are uncorrelated, i.e. E[dW

(1)
t dW

(2)
t ] = 0.

For more detailed discussion on various types of stochasticity, we refer the reader to

chapter 6 of [55].

12This particular type of randomness is connected to models presented above in section 2.3.7. This

connection will be discussed later in section 3.4.2.
13An intuitive explanation of stochastic differential is a normally-distributed random variable with

zero mean and variance dt.



Chapter 3
Overview of numerical methods

In this chapter, we present numerous types of numerical methods for solving models.

We focus on models formulated in terms of ordinary differential equations, partial

differential equations, Gillespie framework and stochastic differential equations.

3.1 Ordinary differential equations

In this section an overview of methods for solving differential equations is presented. We

present methods for solving initial problem here, in which a set of differential equations

together with initial condition. 1 Under certain conditions such as Lipschitz continuity,

existence and uniqueness of the solution is guaranteed [16]. For a great introduction

into numerical methods see textbooks [17] and [8] or overviews [18] and [46].

3.1.1 Euler method

One of the easiest methods to implement is to discretize continuous time into time steps

of (usually) equal length ∆t. The system of differential equations is then approximated

by the first-order Taylor polynomial, usually by using approximation

d

dt
f(t) ≈ f(t+ ∆t)− f(t)

∆t
.

The system of equations for the basic SIR model (2.1) then becomes:

S(t+ ∆t)− S(t)

∆t
= −βS(t)I(t)

N
1There are other types of problems, such as boundary value problems.

24
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I(t+ ∆t)− I(t)

∆t
= β

S(t)I(t)

N
− γI(t)

R(t+ ∆t)−R(t)

∆t
= γI(t),

or equivalently:

S(t+ ∆t) = S(t)−∆t β
S(t)I(t)

N

I(t+ ∆t) = I(t) + ∆t

(
β
S(t)I(t)

N
− γI(t)

)
R(t+ ∆t) = R(t) + ∆t γI(t),

Some readers may recognize these equations as explicit Euler method for numerically

solving a system of ordinary differential equations. Along with the initial condition

S(0), I(0), R(0) this set of equations has a unique solution.

The step length ∆t must be short enough so that the solution of these difference

equations is stable, i.e. does not “blow” to infinity, nor become negative.

When approximation of derivative

d

dt
f(t) ≈ f(t)− f(t−∆t)

∆t

is used, we get to a set of equations that have to be solved in each time step:

S(t) = S(t−∆t)−∆t β
S(t)I(t)

N

I(t) = I(t−∆t) + ∆t

(
β
S(t)I(t)

N
− γI(t)

)
R(t) = R(t−∆t) + ∆t γI(t).

This method is known as implicit Euler method for numerically solving differential

equations. The name implicit comes from the fact that the unknown function appears on

both sides of the equation. So a set of algebraic equations must be solved in every time

step. This method is always stable [17].

Another popular finite difference method is Crank-Nicholson method, which is an

“average” of the two above:

S(t) = S(t−∆t)− ∆t

2

(
β
S(t)I(t)

N
+ β

S(t−∆t)I(t−∆t)

N

)
I(t) = I(t−∆t) +

∆t

2

(
β
S(t)I(t)

N
+ β

S(t−∆t)I(t−∆t)

N
− γI(t)− γI(t−∆t)

)
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R(t) = R(t−∆t) +
∆t

2
(γI(t) + γI(t−∆t)) .

This method is always stable and yields a better approximation of a solution of the

differential equation system: the error term of Crank-Nicholson method is of order

O(∆t2) instead of O(∆t) with Euler method [17]. The method is implicit.

3.1.2 Linear multistep method

Another idea of solving differential equations numerically came from the identity:

∆t∫
0

f ′(t+ s)ds = f(t+ ∆t)− f(t).

But since f ′ was evaluated only at t, t − ∆t, t − 2∆t, . . ., the integral on the left-hand

side cannot be calculated exactly. However f ′ can be approximated by interpolation.

For example in two-step method, the interpolation polynomial is constructed through

f ′(t) and f ′(t−∆t):

f ′(t+ s) ≈ f(t) + s
f ′(t)− f ′(t−∆t)

∆t
.

Which gives us formula:

f(t+ ∆t) = f(t) +

∆t∫
0

f ′(t+ s)ds

≈ f(t) +

∆t∫
0

f ′(t) + s
f ′(t)− f ′(t−∆t)

∆t
ds

= f(t) + ∆t f ′(t) +
∆t

2
(f ′(t)− f ′(t−∆t))

= f(t) + ∆t

(
3

2
f ′(t)− 1

2
f ′(t−∆t)

)
.

This method is known as Adams-Bashforth method of order 2. One can see that the name

of this family of numerical methods, linear multistep methods comes from the right-hand

side, where we can find linear combinations of f ′ evaluated at different time steps. The

basic SIR model in this schema can be expressed as:

S(t+ ∆t) = S(t) + ∆t

(
−3

2
β
S(t)I(t)

N
+

1

2
β
S(t−∆t)I(t−∆t)

N

)
I(t+ ∆t) = I(t) + ∆t

(
3

2
β
S(t)I(t)

N
− 1

2
β
S(t−∆t)I(t−∆t)

N
− 3

2
γI(t) +

1

2
γI(t−∆t)

)



3.1. ORDINARY DIFFERENTIAL EQUATIONS 27

R(t+ ∆t) = R(t) + ∆t

(
3

2
γI(t)− 1

2
γI(t−∆t)

)
.

Similar to Euler method, linear multistep method also comes in implicit flavor. The

identity
0∫

−∆t

f ′(t+ s)ds = f(t)− f(t−∆t)

with the same interpolant (3.1.2) gives us:

f(t) = f(t−∆t) +

0∫
−∆t

f ′(t+ s)ds

≈ f(t−∆t) +

0∫
−∆t

f ′(t) + s
f ′(t)− f ′(t−∆t)

∆t
ds

= f(t−∆t) + ∆t f ′(t)− ∆t2

2

(
f ′(t)− f ′(t−∆t)

∆t

)
= f(t−∆t) +

f ′(t) + f ′(t−∆t)

2

This method is implicit, because in order to calculate f ′(t) on the right-hand side, one

must (usually) know the value f(t) on the left-hand side. This family of methods is

known as Adams-Moulton method. This particular method is also known as trapezoidal

rule.

This method applied to SIR model gives us numerical schema:

S(t) = S(t−∆t) +
∆t

2

(
−βS(t)I(t)

N
− βS(t−∆t)I(t−∆t)

N

)
I(t) = I(t−∆t) +

∆t

2

(
β
S(t)I(t)

N
+ β

S(t−∆t)I(t−∆t)

N
− γI(t)− γI(t−∆t)

)
R(t) = R(t−∆t) +

∆t

2
(γI(t) + γI(t−∆t))

There is a very powerful combination of explicit and implicit linear multistep meth-

ods, called predictor-corrector method. It avoids solving a set of equations in each time

step, while still preserving some good numerical properties. The idea is to use the

explicit method to “predict” the value of f(t+ ∆t) and calculate f ′(t+ ∆t) and then use

this value in implicit method to calculate “correction”:

fp(t+ ∆t) = fc(t) + ∆t

(
3

2
f ′(t)− 1

2
f ′(t−∆t)

)
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fc(t+ ∆t) = fc(t) +
∆t

2

(
f ′c(t) + f ′p(t+ ∆t)

)

where subscripts p, c stand for predicted and corrected value. f ′p is derivative evaluated

from predicted value and f ′c is derivative evaluated from corrected value. There are

many choices of predictor-corrector pairs, differing in order, for example the predictor

of order 1 and corrector of order 2 is called Heun’s method [16]. The correction step can

be used multiple times, either a given number of times, or until some convergence

criterion is satisfied.

The SIR model in this schema reads:

Sp(t+ ∆t) = Sc(t) + ∆t

(
−3

2
β
Sc(t)Ic(t)

N
+

1

2
β
Sc(t−∆t)Ic(t−∆t)

N

)
Ip(t+ ∆t) = Ic(t) + ∆t

(
3

2
β
Sc(t)Ic(t)

N
− 1

2
β
Sc(t−∆t)Ic(t−∆t)

N

−3

2
γIc(t) +

1

2
γIc(t−∆t)

)
Rp(t+ ∆t) = Rc(t) + ∆t

(
3

2
γIc(t)−

1

2
γIc(t−∆t)

)

Sc(t+ ∆t) = Sc(t) +
∆t

2

(
−βSp(t+ ∆t)Ip(t+ ∆t)

N
− βSc(t)Ic(t)

N

)
Ic(t+ ∆t) = Ic(t) +

∆t

2

(
β
Sp(t+ ∆t)Ip(t+ ∆t)

N

+β
Sc(t)Ic(t)

N
− γIp(t+ ∆t)− γIc(t)

)
Rc(t+ ∆t) = Rc(t) +

∆t

2
(γIp(t+ ∆t) + γIc(t))

There are more methods from this family, with interpolating polynomials of higher

degrees. However, with the higher degree of the method, the stability usually worsens.
2 For detailed discussion on these methods, we refer the curious reader to chapter 3 of

[44].

2The problem of stability can be approached intuitively from the point of Runge phenomenon for

high-degree interpolating polynomials.
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3.1.3 Runge-Kutta methods

One of the most popular family of numerical methods for solving differential equations

is the Runge-Kutta family. These methods are usually implemented in common numeri-

cal software such as R, Scipy or Julia [14, 82, 72]. For a brief introduction we refer the

reader to the article [45] and for a more detailed explanation to [44].

The idea is to calculate the derivative multiple times during one step and estimate

the solution by a suitable linear combination of these derivatives. The derivatives may

depend on time as well as on the value of the function: f ′ = f ′(t, f(t)). By choosing a

good linear combination, one can eliminate the largest error terms. For example, “the

Runge-Kutta” method of order 4 uses 4 evaluations of derivative in each time step:

k1 = f ′ (t, f(t))

k2 = f ′
(
t+

∆t

2
, f(t) +

∆t

2
k1

)
k3 = f ′

(
t+

∆t

2
, f(t) +

∆t

2
k2

)
k4 = f ′ (t+ ∆t, f(t) + ∆t k3) .

Then, f(t+ ∆t) can be approximated by f(t) + ∆t
6

(k1 + 2k2 + 2k3 + k4) with error term

of order O(∆t5)[44]. The schema is sometimes written in the form of tableau, which is

called Butcher tableau3:

0

1/2 1/2

1/2 1/2

1 1

1/6 1/3 1/3 1/6

Each row represents one of values k1, . . . , k4. The left column represents the coefficients

of ∆t in the first argument of f ′. Numbers in the bottom row are linear combination

coefficients of the final approximation. Numbers in the middle array represent coeffi-

cients of ks in each calculation of new k. For the sake of brevity we do not expand the

3Some earlier authors put the coefficients of the linear combination as a last column of this table, for

example [33].
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entire numerical schema of this method for the SIR model.

A slight variation of the method has slightly different coefficients and requires more

operations during one time step, but the error coefficient is smaller:

k1 = f ′ (t, f(t))

k2 = f ′
(
t+

∆t

3
, f(t) +

∆t

3
k1

)
k3 = f ′

(
t+

2∆t

3
, f(t)− ∆t

3
k1 + ∆t k2

)
k4 = f ′ (t+ ∆t, f(t) + ∆t k1 −∆t k2 + ∆t k3)

and f(t+ ∆t) is approximated by f(t) + ∆t
8

(k1 + 3k2 + 3k3 + k4). The Butcher tableau

for this method is:

0

1/3 1/3

2/3 -1/3 1

1 1 -1 1

1/6 1/3 1/3 1/6

3.1.4 Runge-Kutta methods with adaptive stepsize

What made the Runge-Kutta family of methods so successful was the possibility to

control the step length: in difficult-to-integrate regions, the step size would shorten.

The idea is to calculate two approximations of different order and use their difference

to estimate the error. The step length is then chosen so that error is within some desired

tolerance. Much of the computational power can be saved, if the one approximation

“recycles” coefficients from the other, in which case we say that the two methods are

embedded. Some of these methods are listed in [33, 29].

The most common method is Runge-Kutta-Fehlberg method, which uses methods of

order 4 and 5. The difference between these approximations, denoted TE (truncation

error) is of order O(∆t4). If the desired tolerance is ε, the step length must be less than

∆t ·
(

ε
TE

)1/5. In practice, this value is multiplied by 0.9 [45]. The exact coefficients might

differ between implementations. Even Fehlberg himself provides two sets of coefficients
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in pages 12 and 13 of [33]. Later authors found different sets of coefficients that might

be either computationally less expensive, provide better stability or smaller truncation

error.

Another popular method from this family is Bogacki-Shampine method, introduced

in [13], which uses approximations of order 3 and 2 and is usually implemented in

numerical packages [82, 72].

There are also implicit Runge-Kutta methods, which require solving a set of algebraic

equations in each time step. These equations are solved by some numerical method.

Providing the Jacobian of the right-hand side of the differential equation system is

generally recommended for speedup and accuracy [82].

3.1.5 Differential transformation method (DTM)

When an algebraic expression for the differential equations is provided, one can usually

construct (truncated) a polynomial expression that (approximately) solves the system.

The problem of solving differential equations is transformed into solving algebraic

equations for polynomial coefficients. Because this method combines analytical and

numerical methods, it belongs to the family of semi-analytical methods. This method was

used for solving epidemiological models in e.g. [2, 3, 9].

For the sake of simplicity, only expansion of f at t = 0 will be discussed. The solution

of differential equation is written in form:

f(t) =
∞∑
k=0

tk

k!

dkf(t)

dt

∣∣∣∣
t=0

Let us denote the coefficients of tk as F (k):

f(t) =
∞∑
k=0

tkF (k)

F (k) is called transformed function corresponding to f(t). Similarly, let u(t) and v(t) be

some functions with their transformed functions U(k) and V (k) respectively and let

α ∈ R be a scalar. Then transformed functions have following properties [48]:

1. If f(t) = u(t)± v(t), then F (k) = U(k)± V (k).

2. If f(t) = u(t)v(t), then F (k) =
∑k

i=0 U(k − i)V (i).
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3. If f(t) = αu(t), then F (k) = αU(k).

4. If t(f) = d
dt
u(t), then F (k) = (k + 1)U(k + 1).

5. If t(f) = dn

dtn
u(t), then F (k) = (k+1)!

k!
U(k + n).

6. If f(t) = tn, then F (k) = δn−k =

1 if k = n

0 otherwise.

7. If f(t) = exp(αt), then F (k) = αk

k!

Let us now express the standard SIR model with the initial condition S(0) =

S0, I(0) = I0, R(0) = R0 via this method. Let s(k), i(k), r(k) be transformed functions

S(t), I(t), R(t), respectively. Then:

s(0) = S0, i(0) = I0, r(0) = R0,

(k + 1)s(k + 1) = − β
N

k∑
i=0

s(i)i(k − i)

(k + 1)i(k + 1) =
β

N

k∑
i=0

s(i)i(k − i)− γi(k)

(k + 1)r(k + 1) = γi(k)

where the first three equations represent the initial condition and the last three equations

represent dynamics. This particular system is already eliminated and can be solved

iteratively:

s(1) = −β I0S0

N

i(1) = β
I0S0

N
− γI0

r(1) = γI0

s(2) =
I0S0β (I0β +Nγ − S0β)

2N2

i(2) =
I0 (Nγ (Nγ − S0β)− S0β (I0β +Nγ − S0β))

2N2

r(2) =
I0γ (−Nγ + S0β)

2N
...
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This expansion can be also done numerically, if values S0, I0, R0 are given. The infinite

system is truncated and solved for some maximum value k ≤ kmax. The functions

S(t), I(t), R(t) are then reconstructed as

S(t) =
kmax∑
k=0

s(k)tk

I(t) =
kmax∑
k=0

i(k)tk

R(t) =
kmax∑
k=0

r(k)tk.

In practice, multi-step differential transform method is used, in which the solution

is found on small consecutive time intervals, with solution at the right side of one

time interval becomes initial condition of the next.4 This method was employed in

mathematical epidemiology in [9] or even chaotic dynamical systems as in [70]. The

time interval length can be estimated from the transformed functions s(k), i(k), r(k) so

that the truncation error is within desired tolerance.

3.2 Parabolic partial differential equations

Let us consider the parabolic partial differential equation

∂u(t, x)

∂t
− κ∂

2u(t, x)

∂x2
= 0

on a finite domain x ∈ [0, L]. The function is given some boundary conditions, for

convenience u(t, x)|x=0 = 0 = u(t, x)|x=L and an initial condition u(t, x)|t=0 = u0(x). 5 In

this section, we present two methods for solving this equation. 6

3.2.1 Method of lines

The method of lines transforms the partial differential equation into a system of cou-

pled ordinary differential equations. Several points in the spatial domain [0, L] are

4Multistep DTM with time intervals [0, dt], [dt, 2 dt], [2 dt, 3 dt] with kmax = 1 is equivalent to explicit

Euler method.
5Boundary conditions will be further discussed later in section 5.2.
6The presented methods also apply to hyperbolic partial differential equation ∂2u(t,x)

∂t2 − κ∂
2u(t,x)
∂x2 = 0.
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selected, for example 0, L
k
, 2L
k
, . . . , (k+1)L

k
, L and a set of ordinary differential equations is

constructed:

d

dt
u(t, 0) = 0

d

dt
u(t, L

k
) = κ

∂2

∂x2
u(t, x)|x=L

k

d

dt
u(t, 2L

k
) = κ

∂2

∂x2
u(t, x)|x= 2L

k

...

d

dt
u(t, (k−1)L

k
) = κ

∂2

∂x2
u(t, x)|

x=
(k−1)L

k

d

dt
u(t, L) = 0

with initial conditions

u

(
0,
nL

k

)
= 0 = u0

(
nL

k

)
,

u(0,
iL

k
) = u0

(
iL

k

)
.

The second-order derivatives on the right-hand side of the system can be approxi-

mated by second-order finite differences:

∂2

∂x2
u(t, x)

∣∣∣∣
x=nL

k

≈ k2

L2

[
u

(
t,

(n− 1)L

k

)
− 2u

(
t,
nL

k

)
+ u

(
t,

(n+ 1)L

k

)]
,

which leads to a system of linear ordinary differential equations that can be written in a

compact vector-matrix form:7

d

dt



u(t, 0)

u(t, L/k)

u(t, 2L/k)
...

u(t, (k − 1)L/k)

u(t, L)


= κ

k2

L2



0

−1 2 1

−1 2 1
. . . . . . . . .

−1 2 1

0





u(t, 0)

u(t, L/k)

u(t, 2L/k)
...

u(t, (k − 1)L/k)

u(t, L)


.

This equation can be solved explicitly via matrix exponentiation, or numerically via

one of numerical methods for solving ordinary differential equations.

7Zero elements of the matrix were omitted.
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3.2.2 Fourier series

The function u(t, x) can be written in terms of its Fourier series with variable coefficients:

u(t, x) =
∞∑
n=1

yn(t) sin
(nπx
L

)
,

where yn(0) are Fourier coefficients of initial condition u0. 8 Plugging this ansatz into

the equation and changing the order of sum and differentiation gives us:

∂

∂t

∞∑
n=1

yn(t) sin
(nπx
L

)
= κ

∂2

∂x2

∞∑
n=1

yn(t) sin
(nπx
L

)

∞∑
n=1

∂

∂t
yn(t) sin

(nπx
L

)
= κ

∞∑
n=1

yn(t)
∂2

∂x2
sin
(nπx
L

)

∞∑
n=1

y′n(t) sin
(nπx
L

)
= κ

∞∑
n=1

−yn(t)
n2π2

L2
sin
(nπx
L

)
.

Now, by comparing the coefficients of sin(nπx/L) on both sides yields a set of

ordinary differential equations:

y′n(t) = −κn
2π2

L2
yn(t),

which can be solved analytically or numerically via one of the methods listed above.

3.3 Stochastic models with discrete state space

3.3.1 Master equation

One may be interested in probability distribution of state vectors after some time T .

This might be done for the purpose of simulation, calculating likelihood or statistics

such as mean, variance and correlation between copy numbers. If one is interested in

8This is the main contribution of Fourier in his Analytic theory of heat [35]. As soon as in paragraph

19 of his 433-paragraph-long book, he states: [...] in order to express this property the analytical formulæ

contain terms composed of exponentials and of quantities analogous to trigonometric functions. And in the next

paragraph: If we could observe the changes of temperature for every in at every point of a solid homogeneous mass

we should discover in these series of observations the properties of recurring series as of sines and logarithms..
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S(t)

I(t)

S(t)

I(t)

Fig. 3.1: Left: Graph of reduced SIR model. Edges pointing top left represent new infection

transitions, edges pointing down represent recovery. Right: example of one simulation. The state

vector begins at [S, I]T = [3, 1]T , continuing through [2, 2]T , [2, 1]T , [1, 2]T , [1, 1]T and ending at

[1, 0]T .

estimates of these numbers, repeated simulations might be a good option. However,

the probability distribution may be calculated rigorously using so-called master equation,

which is an (usually infinite) system of linear ODEs. 9

The state space can be viewed as a graph with nodes representing states and oriented

edges representing possible transitions between them. Example of such a graph for

the basic SIR model (reduced to two compartments) is depicted in Fig. 3.1 left. Notice

that edges of this graph represent columns of stoichiometry matrix. The stochastic

simulation then can be viewed as a random walk on this graph and the master equation

represents this walk. Examples of such a walk can be seen on the right-hand side of the

same figure.

The probability that after a short time step ∆t the system is in state x is equal to

probability that the system was already at the state and nothing happened added to the

sum of probabilities that the system was at state x− νj and j-th transition occurred.

Let px(t) denote the probability that at time t the system is in state x. The equation

for px(t) is:

px(t+ ∆t) = px(t)(1− a0(x)∆t) +
n∑
j=0

px−νj(t)aj(x− νj) ∆t,

9Only special cases of an infinite system of ODEs can be solved [15]. In the general case, one can

truncate the state space in some reasonable way and solve the system numerically.
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which in the limit ∆t→ 0+ can be rearranged into ordinary differential equation

dpx(t)

dt
= −a0(x) +

n∑
j=0

px−νj(t)aj(x− νj).

This coupled system of ordinary differential equations is known as the master equation.

For stochastic SIR model the master equation is:

dp[S,I,R]

dt
= −βSI

N
− γI + β

(S + 1)(I − 1)

N
+ γ(I + 1),

where p[S,I,R](t) is a probability that at time t there will be S susceptible, I infectious

and R recovered individuals. Together with initial condition

p[S,I,R] =

1 if[S, I, R] = [S(0), I(0), R(0)]

0 otherwise,

where S(0), I(0), R(0) is the initial number of susceptible, infectious and recovered

individuals at time 0, one can solve the truncated system by some numerical method.

3.3.2 Gillespie algorithm

The best-known technique to solve the continuous-time, discrete-state setup is gillespie

algorithm, published in papers [38, 39]. There are multiple extensions of this algorithm,

such as saving computing power by reusing random numbers [37], or extension of the

algorithm for non-markovian processes [64].

We will sketch the main idea of the algorithm, referring to [38, 32] for a more rigorous

approach. First step of the algorithm is to find the time of the next transition. The

probability that the j-th transition occurs during the next time step of small length ∆t is

aj ∆t. The probability that any transition occurs is a0 ∆t, the sum of the propensities of

individual transitions. During a bigger time interval of length T , no transition happen

with probability (1− a0 ∆t)
T
∆t , as there are T/∆t independent time intervals. Now,

taking the limit ∆t → 0+, we find that no transition will happen with probability

exp(−a0T ), which is the survival function of exponential distribution with parameter

a0. Therefore, time to the next reaction is exponentially distributed with parameter a0.
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The second step is to find the reaction that occurred at the time. It can be proven

that probability that j-th reaction occurred is aj/a0.10

Now we may write down gillespie algorithm:

1. Initialize starting vector x(0) and final time T for simulation. Initialize time

variable t = 0.

2. Calculate propensities a1, . . . an and their sum a0 for current state vector. If a0 = 0,

set t to T and terminate.

3. Generate τ from Exp(a0).11

4. If t+ τ > T , set t to T and terminate.

5. Generate u from U(0, a0). Select the reaction j, the smallest integer for which

u <
∑j

k=1 ak.

6. Set x to x+ νj , set t to t+ τ and go to 2.

The Gillespie algorithm can be applied to the standard SIR model with the state

vector x(t) = [S(t), I(t), R(t)]T , propensities a1(S, I, R) = β SI
N

, a2(S, I, R) = γI and

transition vectors ν1 = [−1, 1, 0]T and ν2 = [0,−1, 1]T .

3.3.3 Tau-leaping algorithm

The Gillespie algorithm might become inefficient if reactions tend to occur at high

rates, because each transition requires two random numbers generations and at most

n− 1 comparisons. For these cases, the τ -leap algorithm was proposed [41]. Instead of

recalculating propensities after each reaction, they are recalculated periodically after

each time step τ . The parameter τ should satisfy leap condition:

Require τ to be small enough that the change in state during [t, t + τ ]

will be so slight that no propensity function will suffer appreciable (i.e.

macroscopically non-infinitesimal) change in value[41].
10This is probability that minimum from n exponentially distributed random variables r1, . . . , rn with

parameters a1, . . . , an is rj .
11The original implementation used U(0, 1) distribution only, from which the exponentially distributed

value was obtained via inverse transform method τ = − ln(1− u)/a0, where u ∼ U(0, 1).
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In fact, Gillespie suggests more strict conditions for selecting τ and falling back to

Gillespie algorithm if τ would be too small.

If the rates can be considered constant during the interval [t, t+ τ ] and transitions

occur independently, then the number of j-th transitions during the interval has Poisson

distribution with mean τ/aj .12 After the τ is chosen, the number of occurrences of each

transition is generated and the state vector is updated.

The tau-leaping algorithm states:

1. Initialize starting vector x(0) and final time T for simulation. Initialize time

variable t = 0.

2. Calculate propensities a1, . . . an and their sum a0 for current state vector. If a0 = 0,

set t to T and terminate.

3. Choose τ that satisfies the leap condition. If t+ τ > T , set τ to T − t.

4. For each j = 1, . . . , n, generate zj from Poiss(τ · aj).

5. Update x to x+
∑n

k=1 zjνj . If any xi < 0, take back this update and go to 4.

6. Set t to t+ τ . If τ = T , terminate, else go to 2.

This algorithm also has some downsides: Because the change of the state vector

may yield negative integers in the state vector, a check in step 5 is needed. If there is

an insignificant probability that some element of the state vector x will be negative

after the leap, some authors propose more strict conditions on τ selection [21]. For

even improved speed of τ selection see [20]. On the other hand, being too specific on τ

may introduce some bias which needs to be corrected and post-leap check needs to be

performed [6].

12It follows from the property that the number of occurrences of independent events with exponentially

distributed waiting time, during a unit of time follows Poisson distribution. In fact, this procedure is the

used as a way of generating random numbers from Poisson distribution [57, 7].
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3.4 Stochastic models with continuous state space

3.4.1 Fokker-Planck equation

The Fokker-Planck equation is the continuous counterpart of the discrete Master equa-

tion, presented in section 3.3.1. Instead of the probability of a given state, the probability

density function is modeled. Let us denote the probability density function of state x

at time t as p(x, t). The equation for p is called Fokker-Planck equation. In the case of

one-dimensional stochastic process described by stochastic differential equation

dXt = µ(Xt, t) dt+ σ(Xt, t) dWt,

the Fokker-Planck equation reads [73, 75]:

∂p(x, t)

∂t
= − ∂

∂x
[µ(x, t) p(x, t)] +

1

2

∂2

∂x2
[σ2(x, t) p(x, t)].

In many cases, this equation does not have a solution in explicit form and numerical

method has to be employed. For more details on the equation, its solution and general-

ization to multivariate distributions, we refer the reader to chapters 4 – 6 of textbook

[73].

This equation can be used to solve the probability distribution of the number of

infectious individuals after a certain time. Also metrics such as expected value, variance

and possibly covariance can be inferred from the solution of the equation.

3.4.2 Euler-Maruyama method

Consider the tau-leaping algorithm, presented in section 3.3.3. Under certain conditions,
13 one can approximate Poisson-distributed random variables zj with parameter τaj

from step 4 of tau-leaping algorithm with normally-distributed random variables with

both the mean and variance τaj [41, 42]. This step effectively treats the copy numbers

13Gillespie in his paper [42] says about these conditions: “If there exists a time interval during which

none of the system’s propensity functions will suffer a noticeable change of value, yet every reaction

channel will be expected to fire many more times than once. It is true that satisfying these conditions will

nearly always require large molecular populations; however, the practical question of how large can be

answered only by appealing directly to those dynamic conditions.”
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as continuous quantities. By denoting time step as ∆t, instead of τ , we can write a

numerical schema for the standard SIR model as:

S(t+ ∆t) = S(t)− βS(t)I(t)

N

(
∆t+ ∆W

(1)
t

)
I(t+ ∆t) = β

S(t)I(t)

N

(
∆t+ ∆W

(1)
t

)
− γI(t)

(
∆t+ ∆W

(2)
t

)
R(t+ ∆t) = γI(t)

(
∆t+ ∆W

(2)
t

)
,

where ∆W
(1)
t ,∆W

(2)
t are independent random numbers generated from normal distri-

bution with zero mean and ∆t variance.

This numerical schema can be also derived from a stochastic differential equation

(2.8) from section 2.3.8, where differentials dS, dI, dR are replaced with finite differences

S(t + ∆t) − S(t), I(t + ∆t) − I(t) and R(t + ∆t) − R(t), respectively and differential

terms dt and dWt are replaced with ∆Wt. This method of generating trajectories from a

given stochastic differential equation is known as Euler-Maruyama method.

3.4.3 Leimkuhler–Matthews method

The Leimkuhler–Matthews method is a modification of the Euler-Maruyama method. It

is best suited for generating long-term trajectories [60]. Besides the state vector Xt, this

method uses a momentum vector Pt. The schema for generating trajectories described

by stochastic differential equation with constant diffusion term σ ≡ const.

dXt = µ(Xt, t) dt+ σ dWt,

the schema reads:

X ′t+∆t = Xt + µ(Xt, t) +
1

2
σPt

generate Pt+∆t ∼ N(~0,∆tI)

Xt+∆t = X ′t+∆t +
1

2
σPt+∆t,

where X ′t+∆t is a “candidate” value for Xt+∆t, which is refined in the next step.

3.4.4 Runge-Kutta methods for stochastic differential equations

Runge-Kutta methods can be generalized for generating trajectories of stochastic differ-

ential equations. A great introduction into the topic of stochastic Runge-Kutta methods
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can be found in chapter 6 of lecture notes [75].

Consider a general Itô stochastic differential equation in the form:

dXt = µ(Xt, t) dt+ σ(Xt, t) dWt

where µ and σ are sufficiently smooth drift and volatility functions. Then the trajectory

of the process can be generated by formula [74]:

k1 = µ(t,Xt)∆t+ (∆Wt − Sk)σ(t,Xt)

k2 = µ(t+ ∆t, St + k1) + (∆Wt + Sk)σ(t+ ∆t,Xt + k1)

Xt+∆t = Xt +
1

2
(k1 + k2)

where ∆Wk is a random number generated from a normal distribution with zero mean

and variance ∆t and Sk is ±
√

∆t, each with probability 1/2. The method has strong

convergence of order 1.

Formulae of higher order are available, for example in [28].



Chapter 4
Immunity boosting

SIRS is an epidemiological model that takes immunity waning into account. Its name is

derived from the added transition from recovered compartment back to the susceptible

compartment: The typical state of an individual in case of an epidemiological event is

S → I → R → S. For further details we refer the reader to the textbook [55], chapter

2.4. A detailed stability analysis of models with waning immunity was done by [68]: it

was shown that such models can become unstable because of the circulating nature of

an individual’s epidemiological status. In the article [31] a custom waning profile was

discussed and an efficient numerical schema was presented.

However, it can be observed that immunity can be also boosted, when a recovered

individual meets an infectious one. A model with immunity boosting was recently

studied in [22], in which the S compartment was subdivided into S1, . . . , S5 by different

immunity status. However, we utilize a different approach here: instead of slowly

increasing the risk of infection, we assume that an individual is fully immune for a

certain period of time, after which is completely susceptible.

We take two approaches here: the first will be modeling by the means of ordinary

differential equations while the second will be by the means of integral-differential

equations. While the first approach is simpler in terms of both implementation and

numerical routines, it works on assumption of Erlang distributions of the immune

period, which may not always be met. Therefore we will also consider a more general

case such as in [31].

43
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4.1 Immunity boosting via ordinary differential equations

4.1.1 Standard SIRS model

Let us consider a standard SIRS model with population dynamics, given by system of

ordinary differential equations:

dS(t)

dt
= −β I(t)S(t)

N
+ ωR(t)− µS(t) + µN

dI(t)

dt
= β

I(t)S(t)

N
− γI(t)− µI(t)

dR(t)

dt
= γI(t)− ωR(t)− µR(t),

with β being the force of infection, γ the inverse of mean infectious period and ω the

inverse of mean immune period and N := S(t) + I(t) + R(t) = const. is the total

population. To analyze this model and incorporate immunity boosting we apply Euler

forward method to the system of equations:

R(t+ ∆t) = R(t) + γI(t) ∆t− ωR(t) ∆t− µR(t) ∆t.

The term γI ∆t represent the number of people that recover from the disease during the

small time step of length ∆t and the term ωR(t) ∆t represent the number of recovered

people that lose immunity during the time step. Note that the number of people

that are about to lose immunity in the next time step is not dependent on the time of

immunization. If we consider immunity boosting as a means of immunization, we do

not expect to see any changes of the model as we will show in the following paragraph.

Out of the ωR(t) ∆t people that are about to lose immunity in the next time step, the

immunity is not lost for those individuals that meet infectious person and have contact

with the pathogen, that is:

β
I(t) (ωR(t)∆t)

N(t)
∆t.

So the discretized equation for recovered in SIRS model with immunity boosting is:

R(t+ ∆t) = R(t) + γI(t) ∆t−
(
ωR(t) ∆t− β I(t) (ωR(t)∆t)

N(t)
∆t

)
− µR(t) ∆t,

which can be transformed back into a differential equation by rearranging the terms:

R(t+ ∆t)−R(t) = γI(t) ∆t−
(
ωR(t) ∆t− β I(t) (ωR(t)∆t)

N(t)
∆t

)
− µR(t) ∆t
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S I R1

β γ

ω

R2

ω
Rk

ω

β̃

β̃

· · ·

Fig. 4.1: Flow diagram of SIRRS model.

R(t+ ∆t)−R(t)

∆t
= γI(t) −

(
ωR(t)− β I(t) (ωR(t)∆t)

N(t)

)
− µR(t).

Now, taking limit ∆t→ 0 gives us the differential equation for recovered:

dR(t)

dt
= γI(t)− (ωR(t)− 0)− µR(t),

which is the exact same equation for recovered as in the standard SIRS model. This

should not surprise us, because the SIRS model is markovian, i.e. the transitions are

independent of the time spent as recovered.

4.1.2 SIRRS model

As we saw in the previous section, the standard SIRS model is not suitable for incor-

porating immunity boosting. However, there are still models only using ODEs that

are capable of capturing it. We will use the so-called “linear chain trick”, which was

successfully used for modeling different distributions of latent and infectious periods,

such as in [36]. In our case, we use the same method to model the immunity period. The

idea is to split immunity loss process into k stages, so immunity loss process becomes:

I
γ→ R1

ω→ R2
ω→ . . .

ω→ Rk
ω→ S. This is schematically presented in figure 4.1.

Using this multi-stage process, we can model the immunity waning process in terms

of ODEs, while implementing immunity boosting and assert some properties of the

immunity waning process. We assert that the time of protective immunity has Erlang
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distribution with mean kω and variance k
ω2 .1 2

For the sake of generality, we assume that active contact with infectious people may

be different for a susceptible individual than for a recovered individual. The contact rate

of an infectious and recovered individual and the probability of pathogen transmission

are included in parameter β̃ with similar meaning than β. 3 If the immune individual

receives the pathogen, he is considered to be immunized again. Therefore we also add

transitions (with fictional transition R1 → R1, so the model formulation will be valid

for k = 1 as well):

R1

β̃
IR2
N−−−→ R1, R2

β̃
IR2
N−−−→ R1, R3

β̃
IR3
N−−−→ R1, . . . , Rk

β̃
IRk
N−−−→ R1,

The entire model then stands:

dS(t)

dt
= −β I(t)S(t)

N
+ ωRk(t)− µS(t) + µN

dI(t)

dt
= β

I(t)S(t)

N
− γI(t)− µI(t)

dR1(t)

dt
= γI(t)− ωR1(t) +

k∑
i=2

β̃
I(t)Ri(t)

N
− µR1(t)

dR2(t)

dt
= ωR1(t)− ωR2(t)− β̃ I(t)R2(t)

N
− µR2(t)

...

dRk(t)

dt
= ωRk−1(t)− ωRk(t)− β̃

I(t)Rk(t)

N
− µRk(t)

We will refer to this model as the SIRRS model.

By more complicated dynamics in sub-compartments Rj we could obtain mixed

Erlang, by which a wide variety of distributions can be approximated. One such method

1If we knew the mean M and standard deviation SD, we could estimate k as
[
M2

SD2

]
and ω as M

k , with

[·] denoting rounding to the nearest integer. Note that due to the discrete nature of parameter k, the

variance is only approximately correct. For an illustrative depiction of Erlang distribution, please refer to

https://www.geogebra.org/m/k8cxjjsx.
2There is an interesting limit behavior for limit k → ∞, while k

ω = const. The mean duration of

protective immunity is held constant, but the variance vanishes to zero. As we approach the limit, the

model behaves as a delayed-differential model with lag kω.
3That is, contact rate, multiplied by probability of successful pathogen transmission. While “success-

ful” transmission for S–I contact is such that pathogen causes change of epidemiological status from

susceptible to infected, for R–I contact it is such that it causes an immunization response.

https://www.geogebra.org/m/k8cxjjsx


4.2. IMMUNITY BOOSTING WITH CUSTOM WANING PROFILE 47

based on matching moments of distributions can be found in [23]. The shape of waning

profiles was studied in e.g. [61, 85, 86].

4.2 Immunity boosting with custom waning profile

This section of the thesis is based on our previous work [31], which has been published

in 2019 in the Journal of Computational Science. In the paper, the SIRS-type model with

general waning profile was introduced and numerical results were presented.

In this thesis, we enhance the model with a general immunity waning profile by con-

sidering immunity boosting. In this setup, we have compartments S, I, R corresponding

to susceptible, infectious, recovered individuals, respectively.

We denote the number of individuals in these compartments by S(t), I(t), R(t).

Furthermore, let us consider the function R̃(t, τ) representing density of individuals,

who are recovered at time t whose time of last immunization event happened at t− τ .

The immunization event is either recovery, or immunity boosting of recovered via

encountering an infectious individual. The total number of recovered individuals at

time t is:

R(t) =

∞∫
0

R̃(t, τ) dτ

for model with continuous time, or

R(t) =
∞∑
i=0

R̃(t, i ·∆t) ∆t

for model with discrete time.

The equation for infectious is the same as before:

dI(t)

dt
= β

S(t)I(t)

N(t)
− γI(t).

The equation for susceptible can be calculated as the remaining population that is

not susceptible nor infectious, once the number of recovered is known:

S(t) = N − I(t) +R(t).

It is, however possible to express the equation for susceptible in terms of differential

equation, as we did in [31], but there is no advantage in doing so.
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4.2.1 Discrete formulation of the model

Let P (τ) be the probability that a person infected at time t did not lose the immunity

until time t + τ . We expect the function P to be non-increasing with range [0, 1]. An

important concept will be conditional probability of individuals retaining immunity up

to time τ + ∆t, given that immunity was still present at time τ . This can be expressed

using conditional probability as:

Pr(immunity at τ) ∩ Pr(immunity at τ + ∆t)

Pr(immunity at τ)
=

Pr(immunity at τ + ∆t)

Pr(immunity at τ)
=
P (τ + ∆t)

P (τ)
.

The first equality is satisfied, because in order to have immunity at τ + ∆t, one must

have not lost immunity at τ .

Now let us write down dynamics for R̃(t, τ). We will again use the Euler method to

proceed with the analysis of the model. After a small time step ∆t, recovered individuals

may lose immunity, maintain immunity, boost immunity or decease. The number of

people who maintain immunity during the time step is the same as the number of

people who had immunity at the beginning of the time step and did not boost immunity

nor lose immunity and did not die. If these three events are independent, then:

maintain immunity︷ ︸︸ ︷
R̃(t+ ∆t, τ + ∆t) =

( not boost immunity︷ ︸︸ ︷
R̃(t, τ)− β̃ I(t)R̃(t, τ)

N
∆t

)not lose immunity︷ ︸︸ ︷
P (τ + ∆t)

P (τ)

not die︷ ︸︸ ︷
(1− µ∆t),

(4.1)

which is an explicit equation for recovered.

We also need to provide a boundary condition for R̃(t, 0). We again proceed by

considering the discrete-time formulation and then taking the limit of step size.

The R̃(t, 0) is the density of individuals, who became fully immune in the time

interval [t − ∆t, t]; either by contact with an infectious individual, or recovery. The

number of recovered individuals whose immunity boosted is

∞∑
i=0

β̃
I(t−∆t)R̃(t−∆t, i ∆t)

N
= β̃

I(t−∆t)R(t−∆t)

N

and the density of individuals who recovered and gained immunity is:

γI(t−∆t)P (0).

Note the factor P (0), that represents the proportion of
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The boundary condition of R̃(t, 0) has form:

R̃(t, 0) = β̃
I(t−∆t)R(t−∆t)

N
+ γI(t−∆t)P (0).

The finite difference model has form:

S(t+ ∆t) = N − I(t+ ∆t)−R(t+ ∆t)

I(t+ ∆t) = I(t) + β
S(t)I(t)

N
∆t− γI(t)∆t− µI(t) ∆t

R̃(t+ ∆t, τ + ∆t) = R̃(t, τ)

(
1− β̃ I(t)

N
∆t

)
P (τ + ∆t)

P (τ)
(1− µ∆t)

R(t) =
∞∑
i=0

R̃(t, i ·∆t) ∆t

with an initial condition:

S(t)|t=0 = S0

I(t)|t=0 = I0

R̃(t, τ)|t=0 = R̃I(τ).

4.2.2 Simplified discrete model

We will repeatedly apply equation (4.1) to some initial condition R̃(t, 0) and get:

R̃(t+ n ∆t, n ∆t) = R̃(t, 0)
P (n ∆t)

P (0)
(1− µ ∆t)n

n−1∏
i=0

(
1− β̃ I(t+ i ∆t)

N
∆t

)
,

which we can rephrase as:

R̃(t, n ∆t) = R̃(t− n ∆t, 0)
P (n ∆t)

P (0)
(1− µ ∆t)n

n∏
i=1

(
1− β̃ I(t− i ∆t)

N
∆t

)
by mapping t 7→ t− n ∆t and i 7→ n− i.

From this we get total number of recovered individuals as:

R(t) =
∞∑
n=0

R̃(t, n ∆t)∆t

= ∆t
∞∑
n=0

R̃(t− n ∆t, 0)
P (n∆t)

P (0)
(1− µ ∆t)n

n∏
i=1

(
1− β̃ I(t− i∆t)

N
∆t

)
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To improve computing performance and numerical stability, we take a logarithm of

the expression
n∏
i=1

(
1− β̃ I(t− i ∆t)

N
∆t

)
.

Let us create an auxiliary function Bn(t) for this:4 5

Bn(t) = ln
n∏
i=1

(
1− β̃ I(t− i ∆t)

N
∆t

)

=
n∑
i=1

ln

(
1− β̃ I(t− i ∆t)

N
∆t

)
with B0(t) ≡ 0 being the empty sum.

So that

R(t) = ∆t
∞∑
n=0

RB(t− n ∆t)
P (n∆t)

P (0)
(1− µ ∆t)neBn(t),

Where RB(t) = β̃ I(t−∆t)R(t−∆t)
N

+γI(t−∆t)P (0) is original boundary condition for R̃. By

this rearrangement, we no longer need a two-dimensional compartment R̃; we need just

its boundary RB and Bn, which makes the computation less demanding on memory.

The entire model reads:

S(t+ ∆t) = N − I(t+ ∆t)−R(t+ ∆t)

I(t+ ∆t) = I(t) + β
S(t)I(t)

N
∆t− γI(t) ∆t− µI(t) ∆t

R(t+ ∆t) = ∆t
∞∑
n=0

RB(t− (n− 1)∆t)
P (n ∆t)

P (0)
(1− µ ∆t)neBn(t+∆t)

RB(t+ ∆t) = β̃
I(t)R(t)

N
+ γI(t)P (0)

Bn(t+ ∆t) =
n∑
i=1

ln

(
1− β̃ I(t+ ∆t− i ∆t)

N
∆t

)
with initial conditions

S(t)|t=0 = S0

4We chose the name B, because the meaning of the variable is propensity of immunity boosting.
5The function f(x) = ln(1 + x) has its own implementation in languages such as fortran, numpy or

julia that is more accurate where x is close to zero. This function is usually named log1p.
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I(t)|t≤0 = II(t)

R(t)|t≤0 = RI(t)

RB(t)|t≤0 = RBI(t)

4.2.3 Partial differential formulation of continuous model

Rearranging terms of equation (4.1), we get:

R̃(t+ ∆t, τ + ∆t) = R̃(t, τ)

(
1− β̃ I(t)

N
∆t

)
P (τ + ∆t)

P (τ)
(1− µ∆t) (4.2)

R̃(t+ ∆t, τ + ∆t)

R̃(t, τ)
=

(
1− β̃ I(t)

N
∆t

)
P (τ + ∆t)

P (τ)
(1− µ∆t)∆t)

For the last step to be correct, we will have to prove that R(t, τ) > 0, which will be done

later. Now, applying logarithm to both sides of the equation gives us:

ln R̃(t+∆t, τ+∆t)− ln R̃(t, τ) = ln

(
1− β̃ I(t)

N
∆t

)
+lnP (τ+∆t)− lnP (τ)+ln(1−µ∆t)

We divide both sides by ∆t and add special zero to the left-hand side of the equation:

1

∆t

(
ln R̃(t+ ∆t, τ + ∆t)− ln R̃(t, τ + ∆t) + ln R̃(t, τ + ∆t)− ln R̃(t, τ)

)
=

=
1

∆t
ln

(
1− β̃ I(t)

N
∆t

)
+

lnP (τ + ∆t)− lnP (τ)

∆t
+

ln(1− µ∆t)

∆t

Finally, by taking the limit ∆t→ 0+ we arrive to partial differential equation:

∂ ln R̃(t, τ)

∂t
+
∂ lnR(t, τ)

∂τ
= −β̃ I(t)

N
+

d

dτ
lnP (τ)− µ

1

R̃(t, τ)

(
∂R̃(t, τ)

∂t
+
∂R(t, τ)

∂τ

)
= −β̃ I(t)

N
+
P ′(τ)

P (τ)
− µ, (4.3)

which is the equation for the compartment of recovered.

In the case of continuous model, the boundary condition has form:

R̃(t, 0) = β̃
I(t)R(t)

N
+ γI(t)P (0).

The entire model can be written as:

S(t) = N − I(t)−R(t)



52 CHAPTER 4. IMMUNITY BOOSTING

dI(t)

dt
= β

S(t)I(t)

N
− γI(t)− µI(t)

1

R̃(t, τ)

(
∂R̃(t, τ)

∂t
+
∂R(t, τ)

∂τ

)
= −β̃ I(t)

N
+
P ′(τ)

P (τ)
− µ

R(t) =

∞∫
0

R̃(t, τ) dτ

R̃(t, τ)|τ=0 = β̃
I(t)R(t)

N
+ γI(t)P (0)

with initial conditions:

S(t)|t=0 = S0

I(t)|t=0 = I0

R̃(t, τ)|t=0 = R̃I(τ)

4.2.4 Integro-differential formulation of continuous model

It is possible to find an analytic solution of equation (4.3), which is:

R̃(t, τ) = R̃(t− τ, 0)
P (τ)

P (0)
exp(−µτ) exp

− β̃
N

τ∫
0

I(t− s)ds

 .

The inner integral can be simplified, if we introduce an auxiliary function C(t), that

will represent cumulative cases of infectious individuals:

τ∫
0

I(t− s)ds =

t∫
t−τ

I(s)ds = C(t)− C(t− τ),

where C(t) is the primitive function of I(t), i.e. dC(t)
dt

= I(t).

The total number of recovered individuals is:

R(t) =

∞∫
0

R̃(t, τ)dτ

=

∞∫
0

R̃(t− τ, 0)
P (τ)

P (0)
exp(−µτ) exp

− β̃
N

τ∫
0

I(t− s)ds

 dτ

=

∞∫
0

RB(t− τ)
P (τ)

P (0)
exp(−µτ) exp

(
− β̃
N

(C(t)− C(t− τ))

)
dτ,
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where RB(t) = R̃(t− τ, 0) = β̃ I(t)R(t)
N

+ γI(t)P (0) is the boundary condition for R̃.

The entire model then reads:

S(t) = N − I(t)−R(t)

dI(t)

dt
= β

S(t)I(t)

N
− γI(t)− µI(t)

R(t) =

∞∫
0

RB(t− τ)
P (τ)

P (0)
exp(−µτ) exp

(
− β̃
N

(C(t)− C(t− τ))

)
dτ

RB(t) = β̃
I(t)R(t)

N
+ γI(t)P (0)

dC(t)

dt
= I(t)

with initial conditions:

S(t)|t=0 = S0

I(t)|t≤0 = II(t)

R(t)|t≤0 = RI(t)

C(t)|t≤0 =

t∫
0

II(s)ds.

4.3 Numerical results

4.3.1 SIRS model

The model was implemented and numerically solved in Python 3.8.8 with packages

numpy and scipy by Runge–Kutta–Fehlberg method (RK45) [47, 82]. Figures were

plotted with matplotlib package [51]. The choice of parameters is academic and its

goal is to illustrate properties of the model. The initial condition was chosen to be:

S(t)|t=0 = 9999, I(t)|t=0 = 1 and Ri(t)|t=0 = 0 for i = 1 . . . k.

Parameters of the following numerical experiments are chosen to illustrate the model

behavior, rather than to describe a real-life situation; however, they are chosen to be

somewhat reasonable in the context of epidemiological modeling.

The standard SIRS model is a special case of the SIRRS model with k = 1. This is

included, so it can serve as a benchmark for other models. The choice of parameters is

presented in the tab. 4.1 and results are shown in fig. 4.2.
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Fig. 4.2: Numerical results of standard SIRS model.
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Parameter β γ µ ω k β̃

Value 30 10 0 0.5 1 −

Tab. 4.1: Parameter values for SIRS model

4.3.2 SIRRS model

The model was implemented and numerically solved in Julia 1.8.0 with packages

DifferentialEquations and StaticArrays [72]. The Runge-Kutta-type of nu-

merical schema of order 5(4) was employed [79]. The snippet of code used in this section

is listed in section 6.1.

For SIRRS model we chose three scenarios: the first with β̃ = 0, the second with

β̃ = β and the third with β̃ = 10β, to investigate the effect of β̃ to the infectious

compartment. We observe that increasing β̃ elongates the relapse period. The precise

connection between β̃ and frequency of peaks may be investigated via linearization of

the system at endemic equilibrium. However, there is no general analytic solution to

the linearization of the SIRRS model.

The parameter values can be found in tables 4.2 and solution to the model with these

parameters is presented in figures 4.3, 4.4 and 4.5.

For a better picture of the internal structure of the R compartment, the solution for

each intermediate stage R1, . . . , Rk are plotted together with their sum in the bottom

part of the figure.

Parameter β γ µ ω k β̃

Scenario 1 30 10 0 8 16 0

Scenario 2 30 10 0 8 16 30

Scenario 3 30 10 0 8 16 300

Tab. 4.2: Parameter values of SIRRS model for scenarios 1 – 3
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Fig. 4.3: Numerical results of SIRRS model, scenario 1.
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Fig. 4.4: Numerical results of SIRRS model, scenario 2.
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Fig. 4.5: Numerical results of SIRRS model, scenario 3.
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4.3.3 Custom waning profiles

The model with custom waning profiles presented in section 4.2.2 was implemented

in Julia 1.8.0, using packages StaticArrays for speedup and OffsetArrays for

convenience. The figures were plotted by the PyPlot package. The infinite sum in the

equation for R(t) was truncated to
∑dτmax/∆te

n=0 , where τmax is time horizon in which we

consider immunization effect and d·emean rounding up to the next integer. 6 The most

important lines of source code are presented in section 6.2.

The novelty of this model was custom waning profiles. To demonstrate the effect of

different waning profiles, we explore four different functions P . They are all (truncated)

distributions of random variables and represent their survival function. 7 All waning

profiles are depicted in figure 4.6. All models were solved with a time step ∆t = 0.002

and in immunization horizon τmax = 5.

The first comes from a random variable with Erlang distribution with parameters

k = 8, λ = 8, so the mean is 2 and variance is 1/4. The waning profile has form:

P1(τ) =
k−1∑
n=0

e−λτ
(λτ)n

n!
,

The model with this waning profile should yield the same results as the SIRRS model,

since both assume Erlang distribution of immune period.

The second function comes from the shifted Bernoulli random variable. The recov-

ered retains immunity for 1 year with probability 1/5, or for 2.25 years with probability

4/5. The mean of this random variable is 2 and variance is 1/4. The waning profile is:

P2(τ) =


1 if τ < 1

4/5 if 1 ≤ τ < 2.25

0 if 2.25 ≤ τ.

The third function comes from truncated normal distribution with mean 2 and

6This is equivalent of truncating the function P into Ptruncated(τ) =

P (τ) if τ ≤ τmax

0 otherwise.
7The survival function S(τ) of a random variable with cumulative distribution function F (τ) is

defined as S(τ) = 1− F (τ).
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variance 1. The waning profile has form:

P3(τ) = Φ(τ − 2)

where Φ is cumulative distribution function of normal random variable with zero mean

and unit variance, i.e. Φ(x) = 1
2

(
1 + erf(x/

√
2)
)
. Note that P3(0)

.
= 0.977 < 1. 8 This

represents the fact that only 97.7% of freshly recovered individuals have antibody levels

high enough to protect them from relapse. 9 This phenomenon is further discussed in

our previous work [31].

The fourth and final waning profile comes from uniform distribution with parame-

ters 0 and 4, i.e. with mean 2 and variance 4/3. The waning profile is:

P4(τ) = max{1− τ/4, 0}.

Despite all waning profiles coming from random variables with mean 2, we can

observe that the profile has an effect on the epidemiological curve. In scenarios 1, 3

and 4 we can observe lower peaks of infection in each wave, whereas in scenario 2 the

peak is stable. Scenarios 3 and 4 show broader and lower shape of infection peak than

scenarios 1 and 2. Scenario 4 seems to quickly settle near endemic equilibrium.

Parameter β γ µ β̃ P

Scenario 1 30 10 0 30 P1

Scenario 2 30 10 0 30 P2

Scenario 3 30 10 0 30 P3

Scenario 4 30 10 0 30 P4

Tab. 4.3: Parameter values of SIRRS model with custom waning profiles for scenarios 1 – 4

8Because the function P is defined on a non-negative domain, the mean time of retaining immunity is

slightly larger than 2.
9Similar effect can be observed after vaccination, which is referred to as primary vaccination failure [87].
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Fig. 4.6: Waning profiles for scenarios 1 – 4.

4.4 Conclusion

In this chapter, we discussed SIRS-type models with immunity boosting. We showed

that in the standard SIRS model, the immunity boosting has no effect. We derived two

novel models.

The first was formulated via the linear chain trick, in terms of ordinary differential

equations and assumed Erlang distribution of immune period.

The second model was formulated as a set of algebraic equation, integral equation,

ordinary differential equation and partial differential equation with a general waning

profile. We provided re-formulation of the model in terms of two algebraic equations,

ordinary two differential equations integro-differential and one integral equation. We

also provided an efficient numerical schema for the model, based on finite differences.

Finally, the numerical results of both novel models were presented in the form of

graphs. The results were focused on the novel features of the model. With the SIRRS

model, the effect of β̃ was investigated. We could observe that the higher β̃, the longer

the relapse time. With custom waning profiles, the effect of a particular waning profile

P was demonstrated. The code snippets for these numerical results are provided in

section 6.1.
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Fig. 4.7: Numerical results of SIRRS model with custom waning profile, scenario 1.
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Fig. 4.8: Numerical results of SIRRS model with custom waning profile, scenario 2.
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Fig. 4.9: Numerical results of SIRRS model with custom waning profile, scenario 3.
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Fig. 4.10: Numerical results of SIRRS model with custom waning profile, scenario 4.



Chapter 5
Spatial models with population diffusion

In this section, a spatial SIR-type model will be introduced. The idea of incorporating

spatial information to the model as well as population migration is well-established, see

for example [24] or [4]. In this thesis, we introduce a model with a diffusion term with a

fractional Laplace operator, which has been adopted as a modeling tool for long-range

diffusion [81].

In the same way as in section 2.3.6, we can expressed the SIR model, but exchange

the Laplace operator with fractional Laplace operator:

dS(t, x)

dt
+ κ(−∆)α/2S(t, x) = −βS(t, x)I(t, x)

N(t, x)
+ ωR(t, x)

dI(t, x)

dt
+ κ(−∆)α/2I(t, x) = β

S(t, x)I(t, x)

N(t, x)
− γI(t, x)

dR(t, x)

dt
+ κ(−∆)α/2R(t, x) = γI(t, x)− ωR(t, x)

(5.1)

for t ≥ 0 and x ∈ [0, L], where −(−∆)α/2 is a fractional Laplace operator.

Initial conditions of the model are:

S(t, x)|t=0 = S0(x),

I(t, x)|t=0 = I0(x),

R(t, x)|t=0 = R0(x),

N(t, x)|t=0 = S0(x) + I0(x) +R0(x),

(5.2)

66
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and boundary conditions are of Neumann type:

∂S(t, x)

∂x

∣∣∣∣
x=0

=
∂S(t, x)

∂x

∣∣∣∣
x=L

= 0

∂I(t, x)

∂x

∣∣∣∣
x=0

=
∂I(t, x)

∂x

∣∣∣∣
x=L

= 0

∂R(t, x)

∂x

∣∣∣∣
x=0

=
∂R(t, x)

∂x

∣∣∣∣
x=L

= 0

(5.3)

for t ≥ 0, which will be justified later.

5.1 Fractional Laplacian

In this section we introduce the concept of the fractional Laplacian (in one dimension).

We present a brief introduction into the topic of modeling of a diffusion process via

parabolic and fractional-parabolic partial differential equations. The curious reader is

referred to [71] for a more detailed explanation.

5.1.1 Standard diffusion

Let us first consider standard diffusion of population in one dimension. The spatial

domain (−∞,∞) is discretized into small sections of width dx and population density

in section x at time t is denoted u(t, x). The population can migrate either to the section

either one to the left or one to the right. This type of diffusion is depicted in fig. 5.1.

Let us suppose that the rate of diffusion depends linearly on the difference in

population densities in neighboring sections. Then, rate of change of population density

at position x at time t can be expressed as:

d

dt
u(t, x) = Cdx

(
u(t, x− dx)− u(t, x)

)︸ ︷︷ ︸
diffusion to the left

+Cdx
(
u(t, x+ dx)− u(t, x)

)︸ ︷︷ ︸
diffusion to the right

= Cdx
(
u(t, x− dx)− 2u(t, x) + u(t, x+ dx)

)
,

where Cdx is a constant ensuring consistent results with varying section size dx. Choos-

ing Cdx equal to κ
dx2 and taking limit as dx → 0+, we get parabolic partial differential

equation:
∂

∂t
u(t, x) = κ

∂2

∂x2
u(t, x) = κ∆u(t, x).
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u(t, x)u(t, x− dx) u(t, x+ dx)

Fig. 5.1: Diagram of ordinary diffusion. Each section can exchange population only with its

neighbors.

This equation can be solved in elegant way, when initial condition u(t, x)|t=0 =

A cos(ω). One can easily verify that u(t, x) = A exp (−κtω2) cos (ωx) is a solution to this

equation. Also note that if initial condition is in form of cosine series: u(t, x)|t=0 =∑N
n=0An cos(ωn), then solution to diffusion equation has form:

u(t, x) =
N∑
n=0

An exp
(
−κtω2

)
cos (ωx). (5.4)

5.1.2 Fractional diffusion

In the same manner as above, let us consider a discretized spatial dimension with the

traveling population. This time, the population can travel to whichever section on the

real line. Let us say that rate of diffusion from section at position x to section at x+n ·dx

is linearly proportional to difference of population densities and to (n · dx)−1−α for some

parameter α ∈ (0, 1].1

u(t, x)u(t, x− dx) u(t, x+ dx)u(t, x− 2dx) u(t, x+ 2dx)

Fig. 5.2: Diagram of anomalous diffusion. Each section can exchange population with any other

section.

The rate of change of population density at position x at time t then is:

d

dt
u(t, x) = Cdx,α

∑
s 6=0

u(t, x+ s · dx)− u(t, x)

|s · dx|1+α
,

where Cdx,α is again a correction factor to account for varying section size dx and

parameter α. Again, by taking the limit of section size dx → 0+, the sum on the
1This means that travel distance is governed by power law with an infinite variance.
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right-hand side changes to principal-value integral:

cαp.v.

∞∫
−∞

u(t, x+ s)− u(t, x)

|s|1+α
ds, (5.5)

where cα is a factor whose value will be determined below.2 The right-hand side of the

equation is fractional Laplacian and is denoted by: −(−∆α/2)u(t, x).

Value of cα is determined by solving fractional diffusion problem

∂

∂t
u(t, x) = −κ(−∆)α/2u(t, x) (5.6)

with initial condition u(t, x)|t=0 = A cos(ωx). We seek the solution in separable form as

a damped cosine wave: u(t, x) = a(t) cos(ωx). Substituting this back to equation (5.6)

we get:

d

dt
a(t) · cos(ωx) = κcα p.v.

∞∫
−∞

a(t) cos(ω(x+ s))− a(t) cos(ωx)

|s|1+α
ds,

where p.v.
∫
ds is Cauchy principal value integral.

We continue solving by manipulating the right-hand side:

κcαa(t) p.v.

∞∫
−∞

cos(ωx+ ωs)− cos(ωx)

|s|1+α
ds.

=κcαa(t) lim
ε→0

 −ε∫
−∞

cos(ωx+ ωs)− cos(ωx)

|s|1+α
ds

+

∞∫
ε

a(t) cos(ωx+ ωs)− a(t) cos(ωx)

|s|1+α
ds


=κcαa(t) lim

ε→0

∞∫
ε

cos(ωx− ωs)− 2 cos(ωx) + cos(ωx+ ωs)

|s|1+α
ds

=κcαa(t)

∞∫
0

cos(ωx− ωs)− 2 cos(ωx) + cos(ωx+ ωs)

|s|1+α
ds

=κcαa(t)

∞∫
0

2 cos(ωx)(cos(ωx)− 1)

|s|1+α
ds

=κcαa(t) cos(ωx)

∞∫
0

2(cos(ωx)− 1)

|s|1+α
ds.

2In literature, this factor in one dimension is usually denoted by c1,α.
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=κcαa(t) cos(ωx) ·
(
|ω|α cos

(απ
2

)
Γ(−α)

)
Choosing cα =

(
− cos

(
απ
2

)
Γ(−α)

)−1 seems to simplify further calculations, that lead to

ordinary differential equation for a(t):3

d

dt
a(t) · cos(ωx) = κcα cos(ωx) ·

(
|ω|α cos

(απ
2

)
Γ(−α)

)
d

dt
a(t) · cos(ωx) = −κa(t) cos(ωx)|ω|α

d

dt
a(t) = −κa(t)|ω|α,

which has solution satisfying boundary condition a(0) = A:

a(t) = A exp (−κωαt) ,

so that solution to the original fractional diffusion equation is:

u(t, x) = A exp (−κωαt) cos(ωx).

Similarly, if the initial condition is expressed as a sum of cosines:

u(t, x)|t=0 =
N∑
n=0

An cos(ωnx),

then the solution to the fractional diffusion problem has the form:

u(t, x) =
N∑
n=0

An exp (−κωαnt) cos(ωnx). (5.7)

Overall, this example shows us three important things. First, the Fourier series can

be a powerful tool to solve not only ordinary diffusion problems but also fractional

diffusion problems, because fractional Laplacian of can be calculated as:

− (−∆)α/2
N∑
n=0

An cos(ωnx) =
N∑
n=0

Anω
α
n cos(ωnx). (5.8)

Second, that by comparing (5.4) to (5.7) we can see that ordinary diffusion is a special

case of fractional diffusion, for α → 2. 4 And third, while the Laplacian of a function

can be evaluated at point x from its arbitrary small neighborhood of (x− ε, x+ ε), for

evaluating fractional Laplacian, the function on the entire real line must be known.5

3One might wonder about the negative sign of cα. But since Γ(−α) ≥ 0 and cos
(
απ
2

)
≤ 0 for α ∈ [1, 2),

the negative sign in fact ensures that cα remains positive.
4The connection between Fourier transform and fractional Laplacian has been also used in various

applications in signal processing [83].
5In the literature, this property is referred to as non-locality of fractional Laplacian operator.
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5.2 Boundary conditions

Recall that the model (5.1) is valid for x ∈ [0, L], and not x ∈ (−∞,∞). In this subsection,

a choice of Neumann boundary conditions is justified. We present three views on the

interpretation of boundary conditions. The reader is referred to section 1.5.4 of [19] for

further discussion on boundary conditions and their interpretation.

5.2.1 Ordinary diffusion and population balance

Let us consider an ordinary diffusion problem on finite interval x ∈ [0, L]:

∂

∂t
u(t, x) = κ

∂2

∂x2
u(t, x), (5.9)

with condition that total population is fixed:

L∫
0

u(t, x)dx ≡ const.

Differentiating both sides with respect to time, we get:

d

dt

L∫
0

u(t, x)dx = 0.

Under conditions of Leibnitz integral rule, we can exchange the order of differentiation

and integration:

L∫
0

∂

∂t
u(t, x)dx = 0

L∫
0

κ
∂2

∂2x
u(t, x)dx = 0

[
∂

∂x
u(t, x)

]L
x=0

= 0

∂

∂x
u(t, x)|x=L −

∂

∂x
u(t, x)|x=0 = 0

The terms on the left-hand side of above equation can be interpreted as: ∂
∂x
u(t, x)|x=L

represents the population inflow from the point x = L into interval [0, L] and term
∂
∂x
u(t, x)|x=0 represents population outflow from point x = 0 from the interval [0, L].
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x = 0 x = L

Fig. 5.3: Schematic depiction of reflection boundary. Individual that tries to travel outside the

interval [0, L] is “reflected” back by the boundary.

In order to study closed population, we require both of these terms to be equal to zero,

which translates into Neumann boundary conditions 0 = ∂
∂x
u(t, x)|x=L − ∂

∂x
u(t, x)|x=0.

However, this approach would not work for fractional diffusion because of the

non-locality of fractional Laplace operator. Only with additional assumptions on u,

such as periodicity, a similar argument would be valid.

5.2.2 Reflection boundary

Since fractional Laplacian can be evaluated only if the function on the entire real line

is known, the solution to the fractional diffusion problem on finite interval [0, L] can

be calculated only if the function is extended beyond this domain. One option of such

extension is to make boundaries “reflect” escaping individuals back to the interval

[0, L], which is depicted in fig. 5.3. Reflection at point x = 0 means that for 0 < ε < L

population going to x = −ε would end up at x = ε. Similarly, reflection at point x = L

means that the population going to x = L + ε would end up at x = L − ε. Multiple

reflections are possible, with point x mapping to L
π

arccos
(
π x
L

)
after all reflections.

These reflections correspond to an even extension (in spatial dimension) of the

function defined on [0, L] and then periodical extension of the function period 2L, so

that u(t,−x) = u(t, x) = u(t, x+ 2L). This type of function extension is depicted in fig.

5.4. In the literature, this approach of extending the studied domain to achieve desired

behavior at the boundary is known as method of (mirror) images [53].

If we additionally require the function u to be smooth,then by using Taylor expansion

around x = 0 we get:

u(t, ε)− u(t,−ε) = u(t, 0) + ε
∂

∂x
u(t, x)|x=0 −

(
u(t, 0)− ε ∂

∂x
u(t, x)|x=0

)
+O(ε2)
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Fig. 5.4: Even and periodic extension of a function defined on [0, L]. Note that the horizontal

axis is non-dimensionalized to x/L.

0 = 2ε
∂

∂x
u(t, x)|x=0 +O(ε2),

where the left-hand side is equal to zero, because u is an even function. Finally, by

dividing both sides by 2ε and taking limit ε → 0, we get homogeneous Neumann

boundary condition:

0 =
∂

∂x
u(t, x)|x=0

Similar argument can be made at point x = L to show the boundary condition at x = L:

0 =
∂

∂x
u(t, x)|x=L.

5.2.3 Cosine series

The third presented point of view on Neumann boundary condition is cosine series

expansion. Let us consider a (fractional) diffusion problem

∂

∂t
u(t, x) = −κ(−∆)α/2u(t, x)

on a finite interval x ∈ [0, L] with parameter α ∈ (1, 2]. As was stated in (5.7), if the

problem’s initial condition could be expressed as the sum of cosines, then the solution

could be also expressed as the sum of cosines.
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Let us express the initial condition in terms of cosine series:

u(t, x)|t=0 =
∞∑
n=0

An cos(nπx/L)

Note that this solution satisfies boundary conditions 0 = ∂
∂x
u(t, x)|x=0 = ∂

∂x
u(t, x)|x=L

and also has property of being even and periodic function.6

Then, the solution to the diffusion problem is:

u(t, x) =
∞∑
n=0

An exp(−κnαπαL−αt) cos(nπx/L),

which also satisfies the same boundary conditions. Furthermore, the total population at

time t is
L∫

0

u(t, x)dx =

L∫
0

∞∑
n=0

An exp(−κnαπαL−αt) cos(nπx/L)dx.

If the order of summation and integration can be exchanged, we can follow:

=
∞∑
n=0

An exp(−κnαπαL−αt)
L∫

0

cos(nπx/L)dx


=
∞∑
n=0

(
An exp(−κnαπαL−αt) · Lδn

)
=A0 exp(−κ · 0απαL−αt)L

=A0 · L,

where δn is a sequence defined as:7

δn =

1 if n = 0

0 otherwise.

6There are other kinds of trigonometric series in which an initial condition could be expressed. For

example if boundary conditions were ∂
∂xu(t, x)|x=0 = ∂

∂xu(t, x)|x=L and u(t, x)|x=0 = u(t, x)|x=L then

we would choose series u(t, x)|t=0 = u0/L +
∑∞
n=1An sin(2nπx/L), where u0 is total population. This

would represent a population living along a circle, where the population at one boundary meets the

population at the other boundary.
7This function is also widely used in signal processing and is a discrete equivalent of Dirac delta

function. The use of δ sequence allowed us to state that
L∫
0

cos(nπx/L)dx is equal to zero if n > 0 and

equal to L if n = 0, and thus continue the computation with only zero-th summand.
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5.3 Numerical methods

In this section, an overview of methods that can be used to solve the model with

fractional diffusion is presented. We present a method of lines for the transformation

of fractional parabolic partial differential equation into a system of coupled ordinary

differential equations, discrete cosine transform for efficient evaluation of the fractional

Laplacian and a method based on Fourier series.

5.3.1 Method of lines

To obtain numerical results for the spatial SIR model with diffusion (5.1), we used the

method of lines. The spatial dimension was discretized into k sub-intervals [0, L
k
], [L

k
, 2L
k

],

. . . , [ (k−1)L
k

, L], and from each sub-interval a midpoint representative was chosen and

partial differential equation was transformed into 3k ordinary differential equations:

d

dt
S(t, L

2k
) = −β

S(t, L
2k

)I(t, L
2k

)

N(t, L
2k

)
+ ωR(t, L

2k
)− κ(−∆)α/2S(t, L

2k
)

d

dt
S(t, 3L

2k
) = −β

S(t, 3L
2k

)I(t, 3L
2k

)

N(t, 3L
2k

)
+ ωR(t, 3L

2k
)− κ(−∆)α/2S(t, 3L

2k
)

...

d

dt
S(t, (2k−1)L

2k
) = −β

S(t, (2k−1)L
2k

)I(t, (2k−1)L
2k

)

N(t, (2k−1)L
2k

)
+ ωR(t, (2k−1)L

2k
)

− κ(−∆)α/2S(t, (2k−1)L
2k

)

d

dt
I(t, L

2k
) = β

S(t, L
2k

)I(t, L
2k

)

N(t, L
2k

)
− γI(t, L

2k
)κ(−∆)α/2I(t, L

2k
)

d

dt
I(t, 3L

2k
) = β

S(t, 3L
2k

)I(t, 3L
2k

)

N(t, 3L
2k

)
− γI(t, 3L

2k
)κ(−∆)α/2I(t, 3L

2k
)

...

d

dt
I(t, (2k−1)L

2k
) = β

S(t, (2k−1)L
2k

)I(t, (2k−1)L
2k

)

N(t, (2k−1)L
2k

)
− γI(t, (2k−1)L

2k
)

− κ(−∆)α/2I(t, (2k−1)L
2k

)

d

dt
R(t, L

2k
) = γI(t, L

2k
)− ωR(t, L

2k
)− κ(−∆)α/2I(t, L

2k
)
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d

dt
R(t, 3L

2k
) = γI(t, 3L

2k
)− ωR(t, 3L

2k
)− κ(−∆)α/2I(t, 3L

2k
)

...

d

dt
R(t, (2k−1)L

2k
) = γI(t, (2k−1)L

2k
)− ωR(t, (2k−1)L

2k
)

− κ(−∆)α/2I(t, (2k−1)L
2k

).

This set of ordinary differential equations can be solved by the numerical method of

choice. In the case of this thesis, the Bogacki-Shampine method of order 3 was used

[13].8

Fig. 5.5: Example of midpoint sampling. Domain [0, L] is subdivided uniformly into k = 16

sub-intervals (borders of which are indicated by vertical gray lines), and a function is evaluated

in the middle of each sub-interval.

5.3.2 Discrete cosine transformation

When solving the model numerically via the method of lines, a fractional Laplacian

must be calculated. As we saw earlier, expressing the function in terms of cosine series is

a straightforward approach. For mid-point representatives, a discrete cosine transform

8Also other methods were in consideration, such as a numerical method for solving ODEs with

quadratic dynamics [58], but these proved to be inefficient.
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Fig. 5.6: A function that contains higher frequencies than k/(2L) leads to aliasing phenomenon

and incorrect calculation. The reconstructed function depicted in orange is calculated using

equation (5.10).

of type II is used. 9 This type is best suited for mid-point representatives with zero

derivatives at the boundary.

A fast algorithm for calculating discrete cosine transform (DCT) is presented in

[62]. The algorithm is similar to the fast Fourier transform algorithm, but avoids using

complex numbers. By this algorithm, a sequence of length k can be transformed in

O(k log k) multiplications. This algorithm is implemented in standard packages for

numerical computation such as Scipy for Python or FFTW for Julia.

DCT-II is a linear transformation of sequence x0, x1, . . . , xk−1 into basis formed by

9Discrete cosine transform of type II is usually abbreviated to DCT-II or simply the DCT.
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cosines: 10 11

yN = 2
k−1∑
n=0

xn cos

(
πN(2n+ 1)

2k

)
If sequence x0, x1, . . . xk−1 corresponds to u

(
t, L

2k

)
, u
(
t, 3L

2k

)
, . . . , u

(
t, (2k−1)L

2k

)
, then coef-

ficients y represent coefficients of cosine series that match the the function u at sampling

points: 12

u

(
t,

(2N + 1)L

2k

)
=
y0

2k
+

1

k

k−1∑
n=1

yn cos
(nπx
L

)
. (5.10)

Once coefficients y are calculated, a fractional Laplacian can be evaluated by (5.8):

−(−∆)α/2u

(
t,

(2N + 1)L

2k

)
=

1

k

k−1∑
n=1

yn

(nπ
L

)α
cos
(nπx
L

)
This operation is the inverse of DCT, but with coefficients yn(nπ/L)α instead of yn,

which can also be done in k log k operations. This way a fractional Laplacian at k sample

points can be evaluated using only O(k log k) operations. The entire process is depicted

in fig. 5.7.

When using the discrete cosine transform, the number of sample points k must be

chosen following the Nyquist-Shannon sampling theorem. The theorem says that the

sampled function must not “oscillate too fast” in comparison with sampling intervals.

An illustration of why this theorem is important is depicted in fig. 5.6. This theorem

also implies that the functions that we can work with are all continuous.

If the samples are too apart, even if the original function is non-negative, the recon-

structed function can become negative. 13 This is known as Gibbs phenomenon in the

context of Fourier analysis or ringing artifacts in the context of signal processing. This

phenomenon is depicted in fig. 5.8. Therefore a non-negativity check is required before

10There are other types of DCT, suitable for other choices of representative points, for example DCT-I

would work if points 0, L/k, 2L/k, . . . (k − 1)L/k, L would be chosen.
11Sometimes, term y0 is multiplied by 1/

√
k and other terms by

√
2/k, so the matrix representing this

transformation is orthogonal. However, the scaling is not important for calculating fractional Laplacian,

because of inverse cosine transformation later.
12The following transformation is the inverse of DCT-II, which is (up to a scaling factor of 1/k) the

same as DCT-III.
13Usually functions that are steeply increasing from values near zero (or steeply decreasing towards

values near zero) usually need many samples to be non-negative after the Discrete Fourier transform.

Examples of such functions would be f(x) = exp(−x2) or f(x) = (x/L)a · (1− x/L)b if a� b > 1.
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DCT

u(t, x)

sampling

multiplication
coefficeint

cosine coefficents of u(t, x) cosine coefficents of −(−∆)α/2u(t, x)

inverse DCT

sampled u(t, ·)

sampled −(−∆)α/2u(t, ·)

Fig. 5.7: Diagram of calculation of fractional Laplacian at sampled points. First, the function

is sampled at k midpoints. Then the cosine coefficients yn are calculated using DCT. These

coefficients are then multiplied by (nπL)α/2 to obtain fractional Laplacian representation in the

cosine domain. Finally, by inverse DCT, values of fractional Laplacian are calculated.
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computation. In article [77], a criterion for non-negativity of Fourier series is provided.

This criterion can be easily extended for the case of discrete cosine transform.

Fig. 5.8: A non-negative function can cross zero after sampling and reconstruction. The function

used here is exp(−x2).

5.3.3 Transformation into cosine series

For the sake of simplicity let us assume that total population density N(t, x) = N is

constant.

We may express compartments S, I, R in terms of cosine series with coefficients s, i, r

respectively, that are functions of time:

S(t, x) =
∞∑
n=0

sn(t) cos (nπx/L)

I(t, x) =
∞∑
n=0

sn(t) cos (nπx/L)

R(t, x) =
∞∑
n=0

rn(t) cos (nπx/L) .
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Then, if we can exchange the order of differentiation and sum:

d

dt
S(t, x) = π/L

∞∑
n=0

d

dt
sn(t)n cos (nπx/L)

d

dt
I(t, x) = π/L

∞∑
n=0

d

dt
in(t)n cos (nπx/L)

d

dt
R(t, x) = π/L

∞∑
n=0

d

dt
rn(t)n cos (nπx/L)

But also:

d

dt
S(t) =− βS(t, x)I(t, x)

N
+ ωR(t, x)− κ(−∆)α/2S(t, x)

=− β

N

(
∞∑
n=0

sn(t) cos (nπx/L)

)(
∞∑
n=0

in(t) cos (nπx/L)

)

+ ω
∞∑
n=0

rn(t) cos (nπx/L)

− κ
∞∑
n=0

sn(t)(nπ/L)α cos (nπx/L)

From this expression, the first term, representing S(t, x) · I(t, x) can be rewritten by

using trigonometric identity cos(a) · cos(b) = 1
2

(cos(a+ b) + cos(a− b)):(
∞∑
n=0

sn(t) cos (nπx/L)

)(
∞∑
n=0

in(t) cos (nπx/L)

)

=
∞∑
n=0

∞∑
m=0

(sn(t) cos (nπx/L)) (im(t) cos (mπx/L))

=
∞∑
n=0

∞∑
m=0

sn(t)im(t) cos (nπx/L) cos (mπx/L)

=
∞∑
n=0

∞∑
m=0

1

2
sn(t)im(t) (cos ((n+m)πx/L) + cos ((n−m)πx/L))

=
1

2

∞∑
n=0

∞∑
m=0

sn(t)im(t) cos ((n+m)πx/L)

+
1

2

∞∑
n=0

∞∑
m=0

sn(t)im(t) cos ((n−m)πx/L) .

The first term can be expressed as:

1

2

∞∑
n=0

∞∑
m=0

sn(t)im(t) cos ((n+m)πx/L)
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=
1

2

∞∑
n=0

n∑
k=0

sk(t)ik−n(t) cos (nπx/L)

=
1

2

∞∑
n=0

cos (nπx/L)
n∑
k=0

sk(t)ik−n(t),

and the second term can be expressed as:

1

2

∞∑
n=0

∞∑
m=0

sn(t)im(t) cos ((n−m)πx/L)

=
1

2

∞∑
n=0

∞∑
k=n

(sk−n(t)ik(t) + sk(t)in+k(t)) cos(nπx/L)

=
1

2

∞∑
n=0

cos(nπx/L)
∞∑
k=n

(sk−n(t)ik(t) + sk(t)in+k(t))

Finally, the equation for susceptible reads:

π/L
∞∑
n=0

d

dt
sn(t)n cos(nπx/L) = − β

2N

∞∑
n=0

cos (nπx/L)
n∑
k=0

sk(t)ik−n(t)

− β

2N

∞∑
n=0

cos(nπx/L)
∞∑
k=n

(sk−n(t)ik(t) + sk(t)in+k(t))

+ ω
∞∑
n=0

rn(t) cos (nπx/L)

− κπα/Lα
∞∑
n=0

sn(t) cos(nπx/L).

By comparison of the terms with the same frequency cos(nπx/L) we get an ordinary

differential equation for sn(t):

d

dt
sn(t) =

L

π

(
− β

2N

∞∑
k=0

sk(t)ik−n(t)− β

2N

∞∑
k=n

(sk−n(t)ik(t) + sk(t)in+k(t))

+ ωrn(t)− κπα/Lαsn(t)
) (5.11)

In the same manner, an equation for infectious can be derived as:

d

dt
in(t) =

L

π

( β

2N

∞∑
k=0

sk(t)ik−n(t) +
β

2N

∞∑
k=n

(sk−n(t)ik(t) + sk(t)in+k(t))

− γin(t)− κπα/Lαin(t)
)
.

(5.12)

Equation for recovered then reads:

d

dt
rn(t) =

L

π

(
γin(t)− ωrn(t)− κπα/Lαrn(t)

)
(5.13)



5.4. NUMERICAL RESULTS 83

The assumption N(t, x) = N can be used to further simplify the model:

R(t, x) = N − S(t, x)− I(t, x)

∞∑
n=0

rn(t) cos(nπx/L) = N −
∞∑
n=0

sn(t) cos(nπx/L)−
∞∑
n=0

in(t) cos(nπx/L)

rn(t) =

N − s0(t)− i0(t) for n = 0

−sn(t)− in(t) for n > 0,

so functions rn(t) can be obtained without solving corresponding differential equations.

This simplification is also beneficial, because to solve the system (5.11) – (5.13) numeri-

cally, we have to truncate the infinite sums. However, the “diagonal” terms sk−n(t)ik(t)

and sk(t)ik+n(t) would be calculated incorrectly. The simplified calculation rn holds

these difficulties back.

5.4 Numerical results

In this section, we present some numerical results of the model (5.1) with a focus on

the novel features of the model. The results were obtained by the method of lines, as

discussed in 5.3.1 with k = 256 lines.

5.4.1 Initial condition

For crafting a suitable initial condition, we proceeded as follows:

First, we selected the total population N = 100 000 and length L = 10, so that popu-

lation density N0(x) = N/L. We chose R0(x) to be zero, because this is an equilibrium

of the model.

Then we chose the initial density of infectious as

I0(x) =
1

L
+

1

L
cos
(πx
L

)
+

√
3

2L
cos

(
2πx

L

)
+

2

3L
cos

(
3πx

L

)
+

√
3

4L
cos

(
4πx

L

)
+

1

5L
cos

(
5πx

L

)
,

(5.14)

which is depicted in fig. 5.9. Note that this initial condition is already in the form of a

cosine series satisfying the Neumann boundary condition and is non-negative.

Finally, we chose the density of recovered as R0(x) = N0(x)− I0(x).
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Fig. 5.9: Initial condition I0(x) described by equation (5.14). Note that the horizontal axis is

non-dimensionalized to x/L and hence the vertical axis is unlabelled. The bottom of the graph

is at x = 0.

5.4.2 Long-term behavior

The model’s long-term behavior is to tend towards equilibrium. The quality of equilib-

rium – disease-free or endemic – depends on the ratio β
γ

.

Because of diffusion, all compartments tend to constant function in x as t → ∞:

S(t, x) → S(t), I(t, x) → I(t), R(t, x) → R(t) and hence diffusion terms of model (5.1),

−κ(−∆α/2), tend to zero. In the limit, the model simplifies into

0 =
∂S

∂t
= −βSI

N
+ ωR

0 =
∂I

∂t
= β

SI

N
− γI

0 =
∂R

∂t
= γI − ωR.

From the second equation, we have either I = 0 or S = γ
β
N . Similar to the SIRS

model, the stability of these equilibria is determined by reproduction number: if β < γ,

disease-free equilibrium is stable; else if β > γ, endemic equilibrium is stable.

This can be seen in fig. 5.10. The parameter values for the two scenarios are listed in

table 5.1.
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Parameter β γ ω k κ α

Disease-free equilibrium 30 36 8 256 0,1 1

Endemic equilibrium 50 36 8 256 0.1 1

Tab. 5.1: Parameter values for disease-free equilibrium

Fig. 5.10: Long-term behavior of the model (5.1). The fast phase in the beginning is followed by

a steady phase. Top row: disease-free equilibrium. Bottom row: endemic equilibrium. Note that

the vertical axis for susceptible in the disease-free scenario is shifted by 105.

5.4.3 Effect of α and κ on initial disease spread

As we saw earlier, the long-term behavior depends only on the ratio β/γ. However, the

initial disease spread depends on other parameters. To demonstrate the novel features

of this model, we focus on α and κ in this section. The time range is shortened to

t ∈ [0, 1/2]. We present four different scenarios with parameter values listed in table 5.2.

The figures for each scenario also contain slices of I(t, x) for values t ∈ {0.05, 0.25, 0.5} to

better see details that may not be visible on other graphs. Figures include total number
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of infectious individuals, i.e.

Itotal(t) =

∫ x

0

I(t, x)dx

Parameter β γ ω k α κ L

Scenario 1 50 36 8 256 1 0.001 1

Scenario 2 50 36 8 256 2 0.001 1

Scenario 3 50 36 8 256 1 1 1

Scenario 4 50 36 8 256 2 1 1

Tab. 5.2: Parameter values of SIRS model with diffusion for scenarios 1 – 4.

As we can see, the results of scenarios 1 and 2 are almost identical. This is due to

diffusion rate κ being almost zero.14 The difference between the number of infectious

people in these two scenarios is at order 10−3 with scenario 2 having more total infectious.

In the case of very weak diffusion, the profiles of infectious are very similar to initial

condition (5.14) with the majority of infectious individuals is located near point x = 0.15

In scenarios 3 and 4, the results show a more uniform distribution of individuals in

each compartment than that in scenarios 1 and 2; this is due to the diffusion coefficient κ

being 1 000-times larger. The homogeneity seems to increase with the order of fractional

Laplacian α. The concentration of infectious individuals is still higher at x = 0, but

the spatial profiles are flatter. The total number of infectious individuals also seems to

increase with the order of fractional Laplacian, α, with the difference at the order of 1.

5.4.4 Effect of spatial dimension

The parameter L represents the length of the spatial interval. The model is not indepen-

dent of this parameter. This is due to the nature of fractional Laplacian. To demonstrate

this effect, we chose to present numerical results with varying L, namely L = 1, L = 100

and L = 10 000. Other parameters remain unchanged. The full list of parameters can

14Note that if we would set κ = 0, the model would be independent of α and would be equivalent to

infinite many ordinary SIRS models with initials conditions S(0, x), I(0, x) and R(0, x).
15In fact, the asymptotic behavior of I(t, x) as t → 0+ can be described as I(t, x) ∼ exp(atI0(x)) for

suitable constant a.



5.4. NUMERICAL RESULTS 87

Fig. 5.11: Numerical results of scenario 1
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Fig. 5.12: Numerical results of scenario 2
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Fig. 5.13: Numerical results of scenario 3
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Fig. 5.14: Numerical results of scenario 4
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be found in table 5.3. Note that compartments S, I, R represent the population density,

so that the results show the overall proportionality to 1/L. The numerical results for

the three scenarios are presented in figures 5.15, 5.16 and 5.17. 16 The spatial profile of

infectious at t = 0.5 as well as a graph of the total number of infectious individuals is

provided for each scenario.

As we can see, the shape of the model solutions is different, even though the initial

conditions have the same shape. We can observe that larger L results in delaying the

peak of infection and a smaller total number of infectious. This observation has a

physical interpretation: when the distances between individuals are higher, the effect of

diffusion is smaller and the infection spreads slower.

Contrary to graphs in section 5.4.3, the profile of infectious at time t = 0.5 shows

that there are more infected individuals near x = L than there are near x = 0. This is

because the initial density of infected individuals was larger near x = 0, the epidemic

peak arrived sooner, and at time t = 0.5, the number of infected individuals has been

decreasing for a longer time. The difference between the number of infected individuals

at time t = 0.5 between scenarios 1 and 3 is on the order of 102.

Parameter β γ ω k α κ L

Scenario 1 50 36 8 256 1.5 1 1

Scenario 2 50 36 8 256 1.5 1 100

Scenario 3 50 36 8 256 1.5 1 10 000

Tab. 5.3: Parameter values of SIRS model with diffusion, scenarios 1 – 3.

16The profile of infectious at time t = 0.5 with L = 1 shows some wiggles: this is due to numerical

problems with explicit Runge-Kutta methods. However, in the DifferentialEquations environment

of Julia language it is difficult to use implicit methods, because DCT operations in the numerical

schema are not auto-differentiable and would require large computational overhead.



92 CHAPTER 5. SPATIAL MODELS WITH POPULATION DIFFUSION

Fig. 5.15: Numerical results of scenario 1

Fig. 5.16: Numerical results of scenario 2
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Fig. 5.17: Numerical results of scenario 3

5.5 Conclusion

In this chapter, we provided a gentle introduction to the topic of fractional Laplacian.

We formulated a SIRS-type model with population diffusion, where the diffusion was

modeled by a fractional Laplace operator. We used Fourier series approach to the

diffusion problem and showed that Laplace operator is a special case of fractional

Laplace operator with α = 2.

We discussed even and period extension of a function and respective behavior at the

boundary of the studied domain: we showed that the zero derivative at the boundary

of the studied domain represents a reflecting boundary and ensures the conservation of

the population.

We elaborated on numerical methods that were used to solve the proposed model.

We utilized the method of lines as a tool to transform a partial differential equation

into a system of ordinary differential equations. We showed that the discrete cosine

transformation is an efficient tool to evaluate fractional Laplacian in the context of

periodic functions. We showed an alternative approach based on the cosine series.

Finally, we showed some numerical results of the new model. We showed that
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long-term behavior is similar to the standard SIRS model. We investigated the effect of

diffusion rate κ and order of fractional Laplacian α on the results. We demonstrated the

effect of spatial domain size on numerical results.



Chapter 6
Appendix: Code snippets

In this section, we present selected snippets of code that were used in this thesis to

numerically solve various models. The code was written in either Python or Julia.

6.1 SIRRS model

6.1.1 Python implementation

import numpy as np
from scipy.integrate import solve_ivp

def SIRRS(t, y, beta, gamma, omega, beta_=0):
S = y[0]
I = y[1]
R = y[2:]
N = y.sum()

dS = -beta*S*I/N + omega*R[-1]
dI = beta*S*I/N - gamma*I

boosting = beta_ * R*I/N
dR = stage_progression - boosting
dR[0] += boosting.sum() + gamma*I

return dS, dI, *dR

initial_state = (9999, 1, *[0]*16)
tspan = (0, 10)
t_eval = np.linspace(*tspan, 1001)
params = (110, 36, 8, 110)

95
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sol = solve_ivp(SIRRS, tspan, initial_state,
t_eval=t_eval, args=params)

S = sol.y[0]
I = sol.y[1]
R = sol.y[2:].sum(axis=0)

6.1.2 Julia implementation

using DifferentialEquations
using StaticArrays

function SIRRS(state, params, t)
beta, gamma, omega, beta_ = params

S = state[1]
I = state[2]
R = state[3:end]
N = sum(state)

dS = -beta*I/N*S + omega * R[end]
dI = beta*I/N*S - gamma*I

dR = similar(R)
dR[1] = gamma*I - omega*R[1]
for i in 2:length(R)

dR[i] = omega*R[i-1] - omega*R[i] - beta_*R[i]/N*I
dR[1] += beta_*R[i]/N*I

end

return [dS, dI, dR...]
end;

initial_state = [9999., 1, zeros(16)...]
tspan = (0., 10.)
t_eval = LinRange(tspan..., 1001)
params = (110, 36, 8, 110)
prob = ODEProblem(SIRRS, initial_state, tspan, params;

saveat=t_eval)
sol = solve(prob);
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6.2 Custom waning profiles (Julia implementation)

using OffsetArrays
using StaticArrays

dt = 0.001
t_max = 10.
tau_max = 5.

beta = 30.
gamma = 10.
mu = 0
beta_ = 30.

tau = collect(0:dt:tau_max)
n_tau = length(tau)
t = collect(-tau_max:dt:t_max)
n_t = length(t)

t_0 = searchsortedfirst(t, 0.)
offset = 1-t_0:n_t-t_0;
t = OffsetArray(t, offset)

S_0 = 9999.
I_0 = 1.
R_I = zeros(length(tau))

P = max.(1 .- tau./4, 0)

S = zeros(Float64, size(t)...)
I = zeros(Float64, size(t)...)
R = zeros(Float64, size(t)...)
R_B = zeros(Float64, size(t)...)

S = OffsetArray(S, offset)
I = OffsetArray(I, offset)
R = OffsetArray(R, offset)
R_B = OffsetArray(R_B, offset)

I[0] = I_0
S[0] = S_0
R[1-length(tau):0] = R_I
N = S[0] + I[0] + R[0]

P0 = P[1]
P_ = P ./P0
B_n = @MVector zeros(n_tau)
exp_mu = (1 - mu*dt) .^ collect(1:n_tau)
P_mu = SA[(exp_mu .* P_)...]

for i = 0:(n_t - n_tau - 1)
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I[i+1] = I[i] + (beta * S[i]*I[i]/N -
(gamma + mu) * I[i]) * dt

R_B[i+1] = beta_ * I[i]*R[i]/N + gamma * I[i] * P0
B_n[1:end] = -I[i:-1:i-n_tau+1]*

beta_./N * dt .|> log1p |> cumsum
R[i+1] = dt * (sum(R_B[i:-1:i-n_tau+1] .* P_mu .*

exp.(B_n)) + R_B[i+1])
S[i+1] = N - I[i+1] - R[i+1]

end;

6.3 Model with diffusion (Julia implementation)

using DifferentialEquations
using StaticArrays
import FFTW: dct, idct

function SIRS_diffusion(S_0, I_0, R_0, beta, gamma, omega, mu,
L, t_max, kappa, alpha, solver=BS3())

k = length(S_0)

x = collect(1:2:2*k) .* (L/(2*k))
tspan = (0., t_max)
t_eval = LinRange(tspan..., 1001)

initial_state = [S_0; I_0; R_0]

freqs = collect(0:(k-1)) .* (pi / L)
freqs_alpha = freqs .^ alpha
function fractional_laplacian(f, kappa=kappa,

freqs_alpha=freqs_alpha)
coef = dct(f)
return kappa .* idct(-freqs_alpha .* coef)

end

function model!(ret, state, params, t)
beta, gamma, omega, mu = params

S = state[1 : k ]
I = state[k+1 : 2*k]
R = state[2*k+1 : 3*k]
N = S + I + R

ret[1:k] = -beta*(S.*I)./ N + omega*R - mu*S + mu*N
kappa*fractional_laplacian(S)

ret[k+1:2*k] = beta*(S.*I)./N - (gamma+mu)*I +
kappa*fractional_laplacian(I)

ret[2*k+1:end] = gamma*I - (omega+mu)*R +
kappa*fractional_laplacian(R)

return nothing
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end;

prob = ODEProblem(model!, initial_state, tspan,
(beta, gamma, omega, mu, p),
saveat=t_eval);

sol = solve(prob, solver);

sol
end

t_max = 10
alpha = 1.
L = 1.
kappa = 0.1
beta = 110
gamma = 36
omega = 8
t_max = 3
mu = 0

x = collect(1:2:2*k) .* (L/(2*k))
N = 100_000
N_0 = fill(N/L, k)
I_0 = (0.5*cos.(x*(pi/L)) + sqrt(3)/4*cos.(2x*(pi/L)) +

1/3*cos.(3x*(pi/L)) + sqrt(3)/8*cos.(4x*(pi/L)) +
1/10*cos.(5x*(pi/L)) .+ 0.5) ./ (L/2)

R_0 = zeros(k)
S_0 = N_0 - I_0 - R_0;

sol = SIRS_diffusion(S_0, I_0, R_0, beta, gamma, omega,
mu, L, t_max, kappa, alpha);

u = reduce(hcat, sol.u)
S = u[1:k, :];
I = u[k+1: 2k, :]
R = u[2k+1: 3k, :];
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